
What is Security?
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

1 Overview

The goal of this course is to give you an overview of the most im-
portant “Big Ideas” on securing computer systems. Throughout the
course, we will touch on ideas from the fields of computer security,
cryptography, and (to some extent) computer systems.

2 What is Security?

Security is a very broad property, but generally the goal of computer
security is to ensure that a particular computer system is behaves
correctly even in the face of an adversary (or attacker) whose goal is to
foil the system. We will use the terms “adversary” and

“attacker” interchangeably throughout
this course.

To achieve this goal, we will need some kind of systematic plan.
That is, we will have to carefully define what it means for our system
to behave correctly and we will have to specify the class of adversaries
against which we want to defend.

For the purposes of this course, we will typically structure our
plan in terms of three components: a model of the system and the
adversary, a security goal, an implementation.

• Model: The system model specifies: Sometimes people call this the “threat
model.” For the purposes of this chap-
ter, think of the model as describing
how the attacker and system interact
and the security goal as defining what
our implementation is trying to achieve.

1. what the system is that we are trying to defend,

2. what the attacker is, and

3. how the system and attacker interact.

For example, in network security we might think of the system
and the attacker as being two computers that interact over a
network. In this model, the attacker can send network packets to
the victim system. (The attacker in this model cannot, for example,
swap out the hard drive of the victim system.)

When we are studying hardware security, we might consider a
different model: The system we are trying to defend is a CPU, and
the adversary is an external device that can read all of the contents
of the victim system’s RAM. (The attacker in this model cannot,
for example, read the internal state of the victim’s CPU.)

When we are studying ATM security, the system we are trying to
defend is an ATM machine. For an attacker, we might consider a



what is security? 2

person interacting with the ATM through it’s normal interface: the
attacker can insert a malformed ATM card into the machine and
type arbitrary PINs into the device. (The attacker in this model
cannot, for example, take a jackhammer to the ATM to extract the
cash.)

Modeling the adversary and the system in question is almost
always the first step of thinking about system security. While
we often only have an informal system model in mind, the more
precise you—as a system designer—can be about your system
model, the clearer your security properties can be.

• Goal: The security goal defines what we want our system to
achieve in our specified model.

For example, in network security, we might want the property
that “only someone knowing Alice’s secret password can execute
shell commands on the machine.” In hardware security, we might
want the property that “the attacker learns nothing about the data
stored in RAM, apart from its size.” In ATM security, we might
want the property that “an attacker can fraudulently authenticate
as a victim with probability at most 1/10000.”

As you will learn throughout the course, figuring out exactly what
your security goal should be is often quite subtle and challenging.

• Implementation: The implementation is how we achieve the goal.
For example, in securing a computer system on a network, we
might use password-based authentication to protect access to a
computer system.

Together, the model and the goal model create our definition of
security. As such, the model and goal cannot be “wrong”—the threat When you read about security failures

in the news, it is worth trying to
understand whether the failure arose
from a problem with the model, the
goal, or the implementation.

model might not have captured all of the attacks that a real-world
adversary can mount, and goal might turn out to not be exactly what
we needed. Often, the process of designing the model and goal is
iterative: when the system designer discovers a surprising gap in the
security goal (we will see some shortly), she patches the goal and the
implementation accordingly.

The implementation, on the other hand, can definitely be wrong—
if the implementation does not guarantee the goal under the model
in question, due to bugs or oversights or supply chain vulnerabilities
or anything else, the implementation has a mistake.

The implementation is always public: Kerckhoff’s principle. Throughout
this course, we will always assume that the attacker knows the
implementation of whatever security mechanism we are using. The



what is security? 3

only thing that we keep secret from the adversary are the system’s
secret keys. This is known as Kerckhoff’s principle. The logic behind
this way of thinking is that: (1) it is often relatively easy for the
attacker to learn bits of information about the system design and (2)
it is much easier to replace a set of cryptographic keys (if the attacker
learns them) than to redesign the entire system from scratch.

2.1 Security is Hard

Building secure systems is challenging. There are at least two broad
reasons for this.

Secure systems must defend against worst-case behavior. First, a secure
system must defend against all possible attacks within the scope of
the system model. In contrast, when we are just concerned about
functionality or correctness, we are often satisfied with a system that
performs well for the cases that users care about. In other words, Some developers do worry about

correctness of their system for all
possible inputs and corner cases; this
is is indeed the mindset that is often
necessary for security.

security is concerned with behavior in worst-case situations, while
correctness is often about behavior in expected situations (i.e., average-
case situations).

For example, suppose that you are a car manufacturer and you
want to test a car stereo functions correctly. Testing that the stereo
works well on average (i.e., in expected situations) is easy: turn the
stereo on and off 10,000 times, try playing some music through it,
and accept it as working if all of these checks pass. Testing that the
stereo works well in the worst case is not as easy: it is possible that if
someone connects an adversarial USB device that sends some spe-
cially crafted malicious packets to the stereo, they can hijack the car
and cause it to explode. But you will never find these malicious pack-
ets by random testing—only by careful inspection. A secure system These attacks are actually possible

in practice! See: Karl Koscher et al.
“Experimental security analysis of
a modern automobile”. In: IEEE
Symposium on Security and Privacy. 2010

must defend against all possible attacks within the threat model;
being certain that a system satisfies this strong security property is a
challenge.

An implementation can never defend against all possible threats. When
we specify a system model, we delimit the set of adversaries against
which our implementation must defend. But real-world adversaries
can behave in ways that are outside of our model and thereby violate
our security goals.

For example, someone besides a TA might be able to access the
grades file for our class by:

• finding a bug in the server software,

• breaking into a TA’s office,



what is security? 4

• compromising the TA’s laptop,

• stealing the password to an administrator’s account,

• tricking a TA into disclosing grades,

• breaking the server’s cryptography,

• getting a job at the registrar and making herself a TA.

And the list never ends. Because our threat model cannot capture
all possible threats, security is never perfect. There will essentially
always be some attacker than can break your system.

This is why we need a threat model: the threat model defines what
kinds of attacks we worry about and which we decide are out of
scope.

2.2 Designing security goals and a threat model

Specifying security goals and a threat model is all about comparing
the cost of defending against an attack with the cost of that attack
if it were to happen. It is almost always impractical to exactly cal-
culate these costs, but this framework is useful conceptually. Cheap
defenses that block major holes are likely to be worth implementing,
but defending against an esoteric RF side channel that could leak
unimportant information is likely not.

Building a threat model always requires iterating—you will not get
it right on the first try. There is likely to be some type of attack that
you didn’t consider at first that ends up being important.

2.3 Designing an implementation

We will focus largely in this class on techniques that have a big
payoff—methods of developing software and tools to use that elimi-
nate entire classes of attacks (or make them much harder).

3 Examples

We give a handful of examples of security failures arising from poor
choices of security goals or threat model.

3.1 Insufficient Attack Models

Assuming specific strategy: CAPTCHA. CAPTCHAs were designed to
be expensive to solve via automation, but easy for a human to read.
Indeed it might be expensive to build an optical-character recognition
system for CAPTCHAs in general, but attackers who want to bypass



what is security? 5

CAPTCHAs do not do this. Instead, they set up computer centers
in countries where the cost of labor is cheap. Attackers then pay
people working in these centers to solve CAPTCHAs.1 The result is 1 Marti Motoyama et al. “Re:

CAPTCHAs—Understanding
CAPTCHA-Solving Services in an
Economic Context”. In: Proceedings of
the 19th USENIX Security Symposium.
Washington, DC, Aug. 2010.

that it costs some fraction of a cent to solve a CAPTCHA. The cost of
solving a CAPTCHA is still non-zero, but the cost is much lower than
the system designers may have intended.

Assuming low limit on computational power: DES. There used to be
an encryption standard called DES that had 256 possible keys. At the
time that it was designed, the U.S. government standards agencies as-
serted that it was secure against even powerful attackers, but today a
modern computer can try all 256 keys at only modest cost. (Academic For example, https://crack.sh/ uses

an array of FPGAs to provide a service
that exhaustively checks all possible
keys.

researchers even at the time of DES’s design understood that 56-bit
keys were not large enough to prevent exhaustive cryptanalysis.2)

2 Whitfield Diffie and Martin E. Hell-
man. “Exhaustive Cryptanalysis of the
NBS Data Encryption Standard”. In:
Computer 6.10 (1977), pp. 74–84.

Because of the weakness of DES against modern computers, ev-
eryone using the standard had to upgrade their block ciphers. For
example, MIT had to switch from using DES for authentication to
newer block ciphers with longer keys, such as AES.

Assuming a secure out-of-band channel: Two-factor authentication (2FA) via
SMS. Many 2FA systems use a text message for authentication, but
an attacker then just needs to convince the clerk at the AT&T store to
give them a new SIM card for your phone number. These attacks are often called “SIM

swapping” or “SIM hijacking”.

This prescient paper from 1984 antic-
ipated the XcodeGhost attack: Ken
Thompson. “Reflections on trusting
trust”. In: Communications of the ACM
27.8 (1984)

Assuming a correct compiler: Xcode. iPhone apps are normally created
and compiled on a developer’s machine, sent to Apple’s App Store,
and sent to iPhones from there. iPhone apps are created using a
tool called Xcode that is normally downloaded from Apple servers.
However, Xcode is a big piece of software and for developers behind
China’s firewall, it was very slow to download. Someone within
China set up a much faster mirror of Xcode, and lots of developers
in China used the version of Xcode from this mirror. However, this
mirror was not serving exactly Apple’s version of Xcode—instead, it
was serving a slightly modified version of Xcode that would inject
some malicious code into every app that was compiled with it. This
took a long time to detect. The Wikipedia article on XcodeGhost,

https://en.wikipedia.org/wiki/

XcodeGhost, provides more details
about this attack.3.2 Insufficient security goal

Business-class airfare. An airline tried to add value to their business-
class tickets by allowing ticket-holders to change the ticket (i.e., the
departure date, origin, and destination) at any time with no fee.
One customer realized that they could board the flight then change
their ticket. The customer could then take an unlimited number of

https://crack.sh/
https://en.wikipedia.org/wiki/XcodeGhost
https://en.wikipedia.org/wiki/XcodeGhost


what is security? 6

business-class flights for the price of one.
In this case, the airline’s goal did not meet their real needs—

perhaps they needed to add an additional goal of the form “every
time someone takes a flight, we get paid.”

Sarah Palin’s Email. Sarah Palin had a Yahoo email account, and
Yahoo used security questions for password reset—their goal may
have been something like “no one can reset a user’s password unless
they know all of the answers to the user’s security questions.” (The
security questions are typically things like “What is your mother’s
maiden name?”) As it turned out, it was possible to find the answer
to all of Palin’s account-recovery security questions on the Internet.3 3 Kim Zetter. Palin e-mail hacker says it

was easy. https://www.wired.com/2008/
09/palin-e-mail-ha/. Sept. 2008.

Yahoo’s implementation may have been perfect, but their goal did not
provide any meaningful security for certain users.

Instruction Set Architecture (ISA) Specification. When defining ISAs
for processors, computer architects thought it would be acceptable
for each instruction to take a different number of cycles to execute.
This had big benefits for performance and for compatibility, but
as we’ll talk about later in the semester, researchers have recently
exploited this timing variability to perform sophisticated attacks on
wide ranges of processors.4 Even if a processor’s implementation 4 Mark D. Hill et al. “On the Spectre

and Meltdown Processor Security
Vulnerabilities”. In: IEEE Micro 39.2
(2019), pp. 9–19.

faithfully implements the specification, the specification itself allows
for certain types of timing side-channel attacks.

Complicated access-control policies. A school in Fairfax, Virginia used
an online course-management software with a somewhat complex
access-control structure: each teacher is in charge of some class, each
class has many students, and each student has many files. Teachers
cannot access student’s files, and there is also a superintendent that
has access to all the files. Teachers are able to change their students’
passwords, and are able to add students to their class. It turned out
that a teacher could add the superintendent as a student, change
the superintendent’s password, and then access all files via the
superintendent’s account. While each of the access-control policies
individually sounds reasonable, together they lead to a bad outcome.

Mat Honan’s Gmail Account. A journalist for wired named Mat
Honan had his Gmail account compromised via a clever attack.5 5 Mat Honan. How Apple and Amazon

Security Flaws Led to My Epic Hacking.
https://www.wired.com/2012/08/

apple-amazon-mat-honan-hacking/.
Aug. 2012.

Honan had a Gmail account. Gmail’s reset-password feature avoided
using security questions, and instead used a backup email account.
The attacker triggered the reset-password feature, which sent a reset
link to Honan’s Apple email account.

https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/


what is security? 7

The attacker then attempted to gain access to Honan’s Apple email
account. The attacker triggered the reset-password feature on the
Apple account. Apple’s reset-password feature, in turn, required
Honan’s address and the last four digits of the credit card number.
The attacker was able to find Honan’s address publicly, but could not
easily find his credit-card number.

The attacker found this credit-card information through Honan’s
Amazon account. Amazon, which knew his credit card number,
required a full credit-card in order to reset an account. However,
Amazon allowed buying something for a certain account without
logging in, so long as you provide a new credit card number. It also
allowed saving this new credit card number to the user’s Amazon
account. So, the attacker made a purchase on Amazon with the
attacker’s credit card. Then, the attacker saved their own credit card
number to Honan’s Amazon account. Next, the attacker triggered
Amazon’s reset-password feature, and—using the credit-card number
saved to the account—were able to reset Honan’s Amazon password
and access his Amazon account. The attacker was then able to see
the last four digits of Honan’s real credit card within his Amazon
account, use that to reset his Apple mail account, and then use that to
reset Honan’s Gmail account.

Complex chains of systems like this can be very hard to reason
about, but these interactions ultimately are security-critical.

3.3 Buggy implementations

Bugs, misconfigurations, and other mistakes are the most common
cause of security issues. A rule of thumb to keep in mind is that
every 1000 lines of code will have around one bug. This is a very
rough estimate, but the basic idea is that more code will have more
bugs. An effective strategy to reduce security vulnerabilities is to
reduce the amount of code in your system.

Missing Checks: iCloud. Apple’s iCloud performs many functions—
email, calendar, storage, and Find my iPhone. Each of these had their
own way of logging in, but across all of them a common goal was to
limit the attacker’s ability to guess a user’s password. To do this, they
added rate limiting to all the login interfaces, allowing something like
only 10 login attempts per hour—but they forgot the Find my iPhone
login interface.6 Because this authentication code was duplicated all 6 J. Trew. ‘Find My iPhone’ exploit may be

to blame for celebrity photo hacks (update).
https://www.engadget.com/2014-09-

01-find-my-iphone-exploit.html.
Sept. 2014.

over the place, there were many places to remember to add this rate
limiting, but the attacker only needed one weak login interface to
brute-force a password. In general, avoiding this repition will make it
much easier to build a secure system.

https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html


what is security? 8

Insecure Defaults. When you set up a new service, they almost
always come with some defaults to make the setup simpler. Wi-Fi
routers come with default passwords, AWS S3 buckets come with
default permissions, and so on. These defaults can be convenient, but
they are very important to security because many people will forget
or neglect to change the default. Because of this, the default becomes
the way that the system operates. In order to build a secure system, it
is important that the default is secure.

4 What are the general principles for secure system design?

4.1 Threat Models and Goals

• Create simple, general goals.

• Avoid assumptions (such as “no one else will be able to get a
user’s SIM card”) through better designs.

• Learn and iterate.

• Practice Defense in Depth: don’t rely on one single defense for all
your security—it is useful to use backup defenses to guard against
bugs that will inevitably come up in one defense.

4.2 Implementation

• A simpler system will lead to fewer problems.

• Factor out the security-critical part into a small separate system or
piece of code (for example, hardware security keys).

• Reuse well-designed code, such as well-tested crypto libraries.

• Understand and test the corner cases.

References

Diffie, Whitfield and Martin E. Hellman. “Exhaustive Cryptanalysis
of the NBS Data Encryption Standard”. In: Computer 6.10 (1977),
pp. 74–84.

Hill, Mark D. et al. “On the Spectre and Meltdown Processor Security
Vulnerabilities”. In: IEEE Micro 39.2 (2019), pp. 9–19.

Honan, Mat. How Apple and Amazon Security Flaws Led to My Epic
Hacking. https://www.wired.com/2012/08/apple-amazon-mat-
honan-hacking/. Aug. 2012.

Koscher, Karl et al. “Experimental security analysis of a modern
automobile”. In: IEEE Symposium on Security and Privacy. 2010.

https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/


what is security? 9

Motoyama, Marti et al. “Re: CAPTCHAs—Understanding CAPTCHA-
Solving Services in an Economic Context”. In: Proceedings of the
19th USENIX Security Symposium. Washington, DC, Aug. 2010.

Thompson, Ken. “Reflections on trusting trust”. In: Communications of
the ACM 27.8 (1984).

Trew, J. ‘Find My iPhone’ exploit may be to blame for celebrity photo hacks
(update). https://www.engadget.com/2014-09-01-find-my-
iphone-exploit.html. Sept. 2014.

Zetter, Kim. Palin e-mail hacker says it was easy. https://www.wired.
com/2008/09/palin-e-mail-ha/. Sept. 2008.

https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.engadget.com/2014-09-01-find-my-iphone-exploit.html
https://www.wired.com/2008/09/palin-e-mail-ha/
https://www.wired.com/2008/09/palin-e-mail-ha/

	Overview
	What is Security?
	Examples
	What are the general principles for secure system design?

