
Authenticating People
6.1600 Course Staff

Fall 2024

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In this class, we will talk a lot about requests going to a computer
system. And a lot of security comes down to looking at that request
and deciding how to handle it. For this, it is crucial to know who
issued the request. Then, we can decide whether the system should
allow the request.

Typically, a computer system performs two steps before processing
a request:

1. Authenticate: Identify the person or machine (the “principal”)
making the request.

2. Authorize: Decide if the principal is authorized to make the
request.

3. Audit: Log some information about what requests your system
authorized, so that you can identify malicious requests after the
fact and/or clean up your system after attacks on the authentica-
tion system. (For example, a user who accidentally reveals their
password to an attacker.)

This chapter focuses on authentication. We will first discuss the
attack model and security goals. Then we will describe common
implementations that aim to achieve these goals.

1 Authentication: Security goals

In the simplest model of authentication, we have a client and server—
two machines communicating over a network. Another common scenario has a human

being authenticating to a computer:
think about typing a PIN into a phone
or a password into a computer terminal.
We will discuss this setting more when
we come to passwords.

All authentication schemes try to prevent an attacker from im-
personating an honest user. To precisely define the security goal of
an authentication system though, we have to specify the attacker’s
power: against which types of attack are we trying to defend?

Figure 1 sketches three types of attacks on authentication systems.
In more detail these are, in increasing order of strength are:

• Direct attack. The attacker never sees the target user authenticate
and then tries to impersonate the honest user. PIN-based authenti-
cation systems, e.g., on your phone or on an ATM machine, often
aim to defend only against direct attacks. The screen-lock pass-
word that protects your laptop is also an authentication system
that just attempts to protect against direct attack.

authenticating people 2

>

(a) * 7

server
Client

I >

(b)
client
De

server

> 8
() I

=1

Client
server

Figure 1: There are (at least)
three interesting security goals
for client-server authentication
systems: (a) direct attack, (b)
eavesdropping attack, and (c)
active attack.

That is, these systems do not protect against an attacker that can
look over your shoulder while you are typing your password.
These systems only aim to provide security when the attacker
never sees you (the honest user) authenticate.

• Eavesdropping attack. The attacker observes an honest user authenti-
cating many times—i.e., the attacker sees all of the traffic between
the client and server—and then tries to impersonate that user.
One-time passwords, such as the six-digit authentication codes
that the Google Authenticator app uses, aim to protect against
eavesdropping attacks: an attacker who sees one of your one-time
passwords will not be able to use it to authenticate as you; it is a
one-time password.

• Active attack. The attacker that compromises the server, interacts
with the honest user, and after the server is restored to a good
state, tries to authenticate as the honest user (active attack).

U2F security keys, and other schemes based on digital signatures
(??), aim to protect against active attacks.

Systems that defend against active attacks provide the strongest
form of security, in that they also protect against eavesdropping at-
tacks and direct attacks. Systems that defend against eavesdropping

authenticating people 3

also defend against direct attacks. Systems that defend against di-
rect attacks are the weakest—they do not necessarily provide any
protection against the other types of attack.

2 Protecting against direct attacks:
Bearer tokens, PINs, and passwords

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 2: A bearer-token-based
authentication scheme. To
authenticate, the client sends
its secret key k to the server.
WARNING: In practice, the
server should store the secret k
under a slow hash function (see
??).The simplest form of authentication uses secret passwords or PINs.

We sometimes call these secret values bearer tokens; whoever bears
(holds) a user’s token can authenticate as that user. Authentication
with such schemes works as follows:

1. The server holds a password (or PIN or random token string) for
the client.

2. To authenticate, the client sends their password to the server.

3. The server checks the password against its stored password and
accepts if they match.

The benefit of password-based authentication schemes is that
they are simple and easy to implement. In addition, a human can
play the role of the client in a password-based authentication system
(e.g., as you do when you type a PIN into your phone). Fancier
authentication systems require the client to compute non-trivial
cryptographic functions—not functions that normal humans can
compute in their brains.

Bearer-token-based schemes do provide security against direct
attacks: if an attacker has never seen the user authenticate, the at-
tacker’s best strategy is to just guess the user’s password. Thus, the
security of these schemes against direct attacks depends entirely on
the adversary’s uncertainty about the password.

In some bearer-token-based systems, the server can assign a ran-
dom password to each user. For example, when you create an ac-
count for certain web APIs, the API provider will give you a random
secret key—a bearer token. You will have to include this secret key
with each API request. Modern APIs use the stronger authentication
mechanisms we describe later in this chapter.

authenticating people 4

In the vast majority of password- and PIN-based login systems,
the user may choose their own password. This creates all sorts of
headaches. . .

2.1 What makes a good password?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

12
34
56

12
34
56
78
9

12
34
5

qw
er
ty

pa
ss
w
or
d

12
34
56
78

11
11
11

12
31
23

12
34
56
78
90

12
34
56
7

qw
er
ty
12
3 0

1q
2w

3e
aa
12
34
56
78

ab
c1
23

pa
ss
w
or
d1

12
34

qw
er
ty
ui
op

12
33
21

pa
ss
w
or
d1
23

1q
2w

3e
4r
5t

ilo
ve
yo
u

65
43
21

66
66
66

98
76
54
32
1

12
3

12
34
56
a

qw
e1
23

Fr
eq
ue
nc
y

(n
or

am
liz

ed
 to

 1
)

Figure 3: The most common
passwords, according to Nord-
Pass (https://nordpass.com/
most-common-passwords-list/),
sorted by their frequency de-
scending. A small number of
common passwords dominate.

Rank Password
1 123456

2 123456789

3 12345

4 qwerty
5 password
6 12345678

7 111111

8 123123

9 1234567890

10 1234567

11 qwerty123

12 000000

13 1q2w3e
14 aa12345678

15 abc123

16 password1

17 1234

18 qwertyuiop
19 123321

20 password123

Table 1: The most pop-
ular passwords in 2021,
according to NordPass,
https://nordpass.com/

most-common-passwords-list/.

The security of a password-based authentication system rests
entirely on the attacker’s inability to guess the password in a small
number of guesses.

Entropy is a way to quantify an adversary’s uncertainty about a
value sampled using a random process, or from a particular probabil-
ity distribution. If a distribution has b bits of entropy, then it will take
at least roughly 2b guesses for an attacker to correctly guess a value
sampled from this distribution.

The uniform distribution over 128-bit strings has 128 bits of en-
tropy. The distribution from which humans typically choose their
passwords has much less entropy—empirically, more like 20 bits.

Ideally, we would want all passwords to be equally as likely,
from the adversary’s perspective. (These would be “high-entropy”
passwords.) If a system generated a truly random password for
each user, each password would be indeed equally likely. But then it
becomes very difficult for a user to remember their password, much
less many random passwords for many different services.

Typically, people have to remember their passwords, so we let
them pick their own passwords. When they do, it turns out that
many people are likely to choose the same password.

A typical password might be sampled from a distribution with
roughly 20 bits of entropy—if an adversary is able to make 220

guesses at the password, they can expect to guess the password

https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/

authenticating people 5

correctly. One can computer easily make 220 authentication requests
to another in a few minutes.

2.2 Dealing with weak passwords

Every system that uses password- or PIN-based authentication must
contend with the fact that most passwords are not that difficult for an
attacker to guess.

In this section, we describe some mitigation strategies: all are
flawed, but each is better than nothing. The goal of each is to make
the attacker’s job slightly more difficult; by stacking a few of these
defenses on top of each other, we can substantially strengthen the
end-to-end system.

Aggressively limit the number of guesses. Therefore, when using pass-
words as an authentication mechanism, an authentication system
must always somehow limit the number of password guesses.

For example, some phones allow 10 guesses at the screen-lock
PIN before the device resets itself. Limiting the number of guesses
effectively prevents a single account from being compromised—
provided that the password is not too too weak. One downside is
guess limits create the possibility for denial-of-service attacks: an
attacker can potentially make 10 guesses at your password and lock
you out of your phone or online-banking account.

In addition, in many physical computer systems have multiple
authorized users, each with their own password. If the guess limit
is enforced only on a per-user basis, then an attacker can often com-
promise some account on the machine if it is allowed 10 guesses at
every user’s password. Preventing these types of attacks requires
some additional measures: websites that use password authentication
rate-limit guesses by IP, or use CAPTCHAs, etc.

Try to coerce users into picking stronger passwords. Modern websites
will often provide the user with a “password-strength checker”
that tries to give the user some sense of how strong or weak their
password is. These strength meters are completely heuristic and can
be wildly wrong: they might say that 6175551212 is a great password;
if the attacker knows that 617-555-1212 is my phone number, it is
probably not a great password. These strength meters sometimes
check a user’s password against public lists of popular passwords.
Ensuring that your password isn’t in the million most popular ones
gives you at least some protection against untargeted attacks.

Two common strategies for encouraging users to choose strong
passwords that don’t work terribly well are:

authenticating people 6

• Require longer passwords. If someone tries to use abc123 as a pass-
word but it’s not long enough, they might use abc123456—but this
doesn’t really add much uncertainty. There are standard ways to
lengthen passwords, and a clever attacker will try these first.

• Prohibit using common English words in passwords. It’s not clear
that this is a good idea. Five randomly chosen words from the
dictionary will form a strong password, and prohibiting English
words in passwords may make passwords much more difficult to
remember.

2.3 Avoiding weak passwords with a password manager

When using passwords to authenticate to a website, a user can install
a password manager on their computer that will generate random
passwords for them. Since the user doesn’t need to remember these
passwords, they can be sampled truly at random from a high-entropy
distribution. Once the user authenticates to their computer (using a
password, typically), they can then access their randomly generated
passwords and use them to log in to their websites.

Internally, the password-manager software maintains a table of
servers and the corresponding passwords:

server user pw
amazon.com alice 3xyt42...

mit.edu alice4 a21\$z...

Even when using a password manager, password-based authenti-
cation schemes provide no security against eavesdropping or active
attacks. If an attacker can observe you sending your password to the
server (e.g., with a phishing attack) it can still authenticate as you.

2.4 Password hashing: Trying to get some protection against server com-
promise

Password-based authentication schemes provide no security against
active attacks, in which the attacker compromises the server. And yet,
since attackers manage to breach web servers quite often, we would
really like to provide some defense against server compromise. Forcing password changes. A system may

force their users to change passwords
on a regular schedule (e.g., every six
months). If an attacker has compro-
mised the password database on the
server, it only has a limited amount
of time to access the system before
the passwords change and it will get
locked out. It is not clear that the cost
of requiring frequent password changes
is worth the benefit.

Since, as we have seen, passwords are easy to guess, avoiding
password-based authentication entirely is the safest option where
possible. When a system must use passwords for authentication, the
safest way to store them (e.g., on a server) is using a salted crypto-
graphic password-hashing function. The goal is to make it as difficult as
possible for an attacker to recover the plaintext passwords, given the
hashed values stored on the server.

authenticating people 7

To describe how this works: when a user creates an account with
password pw, the server chooses a random 128-bit string, called a
salt, and the server stores the salt and the hash value h = H(salt∥pw),
where H is a special password-hashing function.

The server then stores a table that looks like this: A rainbow table is a common data struc-
ture that an attacker can use to invert
unsalted password hashes. A rainbow
table is essentially a compressed table
(passwd, H(passwd)) pairs, where H is
a common hash function, and passwd

ranges over a large set of common
passwords.

An attacker can download rainbow
tables for common cryptographic
hash functions, such as MD5 or SHA1,
from the web. If the password hash
is salted with a 128-bit salt, it will be
infeasible to produce a table that covers
any reasonably large fraction of the
(salt∥passwd) pairs.

user salt H(salt∥pw)

alice ra ha

bob rb hb

Later on, when the user sends a password pw′ to the server to
authenticate, the server can use the salt and hash function to compute
a value h′ = H(salt∥pw′). If this hash value h′ matches the server’s
stored value h for this user, the server accepts the password.

To explain the rationale for this design:

• The password-hashing function H is designed to be relatively
expensive to compute—possibly using a large amount of RAM
and taking a second or more of computation. This makes it more
difficult for an attacker to brute-force invert the hash value, since
each guess at the password requires a second of computation
(instead of the microseconds required to compute a standard hash
function, such as SHA256).

• The use of a per-user random salt ensures that guesses at one
user’s password are useless in inverting another user’s password
hash. Salting also defeats precomputation attacks, in which an
attacker precomputes the hashes of many common passwords to
speed up this hash-inversion step later on.

2.5 Biometrics

Biometrics are physical features like your fingerprints, your face,
etc. These are essentially a type of bearer token: whoever is able to
produce a face that looks like yours is able to authenticate as you.

Biometrics are very convenient to use for authentication, since
you will not forget them and cannot easily lose them. Biometrics
most useful when authenticating in person to a device, such as for
phone unlock, or to grant a person access to a secure vault. In these
settings, the device performing the authentication has a “trusted
input path” that can provide some assurance that a real human who
owns that biometric is on the other end. Biometrics are not so useful
for authenticating over a network because the network typically does
not provide a trusted input path (i.e., does not provide any assurance
that the biometric readings are coming from a real human), and
the biometric data itself is not particularly secret. In particular, if
we used biometrics for network authentication, an adversary who

authenticating people 8

knows what your fingerprints looks like could log in to your account.
(Since biometrics are essentially impossible to change, this is a major
drawback.)

3 Protecting against eavesdropping attacks:
Challenge-response protocols

We have so far been talking about a human manually authenticating
to a device (ATM, phone, laptop, etc.) by physically entering a PIN or
password into the device. But we often log in to some server on the
network—Facebook, Gmail, MIT, and so on. In this scenario, we can
get much more creative with the authentication mechanism we use
and the security properties we can demand.

We now assume that our computer has some key k (e.g., a random
128-bit string), and the server also holds the same key k. In this set-
ting, we can hope to provide security against eavesdropping attacks:
even if an attacker can observe the traffic between the client and
server, the attacker learns no information that can help it authenticate
as the client later on.

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 4: A challenge-response-
based authentication system.
The server and client share a
secret key k. To authenticate,
the client sends a function F of
its secret key and the server’s
challenge c.

Figure 4 describes an über-simplified challenge-response authenti-
cation scheme that provides security against eavesdropping attacks.
The protocol takes place between a client and server holding a shared
secret key k.

1. The server chooses a long random string c, which we call a chal-
lenge and sends it to the authenticating client.

2. The client computes an authentication “tag” t ← F(k, c), where
F(·, c) is hard to compute without knowing k. (The function F
here is a Message Authentication Code, which we will talk more
specifically about in ??.) The sends the MAC tag t to the server.

3. The server receives a tag t′ from the client and ensures that t′ =
F(k, c). If so, the server considers the authentication successful.

The security of this scheme derives from the fact that an attacker
cannot produce tags F(k, c) on new challenge values c. (An attacker

authenticating people 9

can always try to replay an old tag it has seen, but since the challenge
changes with every authentication request, the server will always
reject the old tag.)

3.1 Time-based One-Time Passwords (TOTP)

Time-based one-time passwords are a type of challenge-response
authentication protocol. The only difference from Fig. 4 is that in a
TOTP scheme, the client and server derive the challenge from the
current time. The user has a device, such as a phone, that shares a se-
cret key k (e.g., a random 128-bit string) with the server. Both parties
agree on a protocol by which to generate this code—something like
F(k, gettimeofday() / 30). The phone can generate the code, display
it to the user, and the server can then verify the code by recomputing
it.

3.2 Authenticating requests

Often, a client will want to send an authenticated message to a server.
That is, the client often wants to simultaneously authenticate to
the server and send a request req, such as req = rm file.txt. To
accomplish this, the client can compute the challenge value as the
hash of the server-provided challenge c and the client’s request. So
the tag looks like: treq ← F(k, c∥req). Then the client sends the pair
(treq, req) to the server. In this way, the server can simultaneously
authenticate the client and be sure that the request req came from the
client.

An unsafe way for the client to simultaneously authenticate to
the server and send a request would be for the client to compute
the MAC tag t ← MAC(k, r) and then send (t, req) to the server. A
network attacker could modify the client’s request to (t, req′) en route
to the server without the server being able to detect this attack.

3.3 Phishing attacks (attacker-in-the-middle attacks)

A phishing attack is one in which an attacker tricks a user into giving
away their Gmail password, for example, by creating a website that
looks, for example, like the gmail.com login page. TOTP passwords
have a similar vulnerability: an attacker can simply ask the user to
give her the one-time code by pretend to be tech support, or the
user’s employer, or a customer-service representative. In this setting,
TOTP codes are slightly better than standard passwords since the
attacker must use a stolen TOTP code within ≈30 seconds of stealing
it, which requires a much more sophisticated attack.

authenticating people 10

Phishing attacks take advantage of the fact that in password- and
TOTP-based authentication schemes, there is no binding between the
authentication process and the server’s subsequent communication
with the client. The attacker here doesn’t really break the authenti-
cation scheme; the problem is that the authentication scheme didn’t
authenticate enough. U2F, which we now discuss, handles that issue.

4 Protecting against active attacks: Signatures and U2F

k

K
~ k

1 >

A
Client

server

k challenge < k

~ L

1 f(k,)
A >

Client
server

k

~ L
challenge <

F(k)
1
A Proof that I know R

<
Client

server

Figure 5: An authentication
scheme based on digital signa-
tures.

To provide security against active attacks, we can use an authenti-
cation scheme based on digital signatures, which we will discuss in
??. With these schemes, the client has a secret key k and the server
stores some hard-to-invert function of the key F(k). (We call F(k)
the “public key.”) In particular, the server does not store any secrets—
even if the attacker can compromise the server and/or interact with
the honest client, it cannot learn the client’s secret key k nor learn
any information that it can use to later authenticate as the client. To
authenticate, the server sends the client a challenge and the client
produces a digital signature on the challenge c—essentially a proof
that the client knows the secret key k and that it intended to sign the
challenge c.

The U2F USB security tokens that you may have seen use this form
of authentication. As an added bonus, they prevent phishing attacks
by binding the authentication process to the name of the server that
the client is trying to authenticate to. In particular, the U2F software
on the client passes the name of the server (e.g., amazon.com), in
addition to a server-provided random challenge c, to the U2F token.
The token then produces a signature on the string c∥amazon.com. If
the attacker sets up amason.com and gets the user to visit it, the U2F
device will only generate a code that is good for amason.com and not
the real amazon.com.

5 Two-Factor Authentication

Many systems use multiple forms of authentication to try to boost
security. In particular, as we have already seen, passwords are a

authenticating people 11

weak authentication mechanism: humans are bad at choosing strong
passwords and attackers have become good at stealing password
databases and recovering many users’ passwords at once.

A common technique to harden password-based authentica-
tion systems is to combine passwords with a second method of
authentication—one with a different failure mode. Common authenti-
cation schemes are:

• Something you know: password, PIN, etc

• Something you have: USB key, phone, etc

• Something you are: biometrics (fingerprint, face ID)...

	Authentication: Security goals
	Protecting against direct attacks: Bearer tokens, PINs, and passwords
	Protecting against eavesdropping attacks: Challenge-response protocols
	Protecting against active attacks: Signatures and U2F
	Two-Factor Authentication

