
Collision Resistance and File Authentication
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In the last chapter, we focused on authenticating people—ensuring
that a person (or a request on behalf of that person) is likely who
they claim to be. In this chapter, we will focus on authenticating files,
code, and other data. When we say that we want to authenticate a
file, we mean that we want to verify that the file’s contents are exactly
as they were when we or someone we trust last viewed them. The
key new tool we use to do so is a collision-resistant hash function.

1 Intuition: Collision resistance

For our purposes, a hash function H maps a bitstring of any length
onto a fixed-size space of outputs, so the type signature is H :
{0, 1}∗ → {0, 1}λ.

In order for a hash function to be collision-resistant, we want it
to be the case that for any input, the generated output should be
“unique.” Of course, it cannot really be unique—we are mapping
infinitely many inputs onto finitely many outputs—but we want it to
be computationally infeasible to find a pair of distinct inputs that have
the same hash values (a “collision”).

Security goal: A hash function H is collision resistant if it is
“computationally infeasible” to find two distinct strings x and x′

such that H(x) = H(x′).

Given a long message m, it’s hash H(m) under a collision-resistant
hash function is like a short “fingerprint” of the message—the
hash essentially uniquely identifies the message m. For that rea-
son, collision-resistant hash functions let you authenticate a long
message m by authenticating the short fixed-length string H(m). We
often call the hash value H(m) a digest.

1.1 Applications

Secure File Mirroring. Often a user wants to download large files
(e.g., software updates) from a far-away server. To speed up this
process, a company or Internet-service provider may set up local
mirrors of the remote files. Users can then download the files from
the nearby mirror instead of the far-away server. However, without
additional security measures, the mirror may server users a different

collision resistance and file authentication 2

file than the one the mirror fetched from the origin server. If the
mirror is malicious, it can, for example, trick the user into installing
a backdoored software update. (We saw an attack based on mirrors
in ??.)

To protect against a malicious mirror, we can add some authen-
tication on the file that the mirror hosts. Say that the origin server
publishes a large software update f . The origin server will send the
file f to its mirrors and the origin server itself will serve the hash
digest d ← H(f) to anyone who asks for it. A user who wants to
fetch the update can download d from the origin server directly—this
will be fast since the digest is tiny. Then, the client can fetch the up-
date itself from a (potentially untrustworthy) mirror. When the client
receives a file f̂ from the mirror, it can check that d = H(f̂) to ensure
that f̂ is the true software update. If H is collision resistant, then if
the hash value H(f̂) matches the origin server’s digest d, the files are
almost certainly identical.

Subresource Integrity. If a program fetches a file from some content
delivery network, it can store the hash of that file locally and use
it to verify that the contents of the file did not change since the
application was developed.

Outsourced File Storage. If you want to store your files on a cloud
provider, you want to be sure that the cloud provider does not mali-
ciously modify the files without you noticing. To make sure of this,
you can store H(files) locally, which takes very little storage space.
Then, when you redownload your files locally, you can recompute the
hash to verify that they were not tampered with.

2 Defining collision resistance (slightly more formally)

An adversary’s goal in breaking a collision resistant hash function
is to find a collision—a pair of values m0, m1 ∈ {0, 1}∗ such that
m0 ̸= m1 and H(m0) = H(m1).

Definition 2.1 (Collision Resistance). A function H : {0, 1}∗ → {0, 1}λ

is collision-resistant if for all “efficient” adversaries A, we have that:

Pr[H(m0) = H(m1), m0 ̸= m1 : (m0, m1)← A()] ≤ “negligible”

In words, this means that the probability of finding a collision is so
small that no efficient adversary could hope to do it.

There are two ways of thinking about the terms “efficient” and
“negligible” that we use in this definition—one mindset we use in
practice and the other mindset we use in theory.

collision resistance and file authentication 3

• In theory. . .

– All of our cryptographic constructions are parameterized by an
integer λ ∈ {1, 2, 3, . . . } that we call the security parameter. So
instead of a single collision-resistant hash function H, we have a
family of functions {H1, H2, H3, . . . }, where the function Hλ has
λ-bit output.

– An “efficient” algorithm is a randomized algorithm that runs in
time polynomial in λ.

– A “negligible” function is one that grows slower than the in-
verse of every polynomial—a function that is O(1

λc) for all
constants c ∈N.

• In practice. . .

– We use a fixed hash function H with a fixed-length output,
which might be as 256 or 512 bits.

– An “efficient” adversary is one that runs in time ≤ 2128.

– A “negligible” probability is some very small constant, like one
smaller than 2−128.

2.1 Understanding which attacks are feasible

Typically, we think of an attack that runs in more than 2128 time as
infeasible and an event that happens with probability less than 2−128

is one that will never happen. These seemingly magic constants come
from empirical considerations:

230 operations/second on a laptop
258 ops/sec on Fugaku supercomputer
268 hashes/second on the Bitcoin network (as of Fall 2022)
292 hashes/yr on the Bitcoin network

2114 hashes required to use enough energy to boil the ocean
2140 hashes required to use one year of the sun’s energy

See Lenstra, Kleinjung, and Thomé for an entertaining discussion
of these constants.1 1 Arjen K Lenstra, Thorsten Kleinjung,

and Emmanuel Thomé. “Universal
security”. In: Number Theory and
Cryptography. 2013.

2−1 fair coin lands heads

2−13 probability that a randomly sampled
MIT grad is a Nobel Prize winner

2−19 probability of being struck by lightning next year
2−28 probability of winning the Mega Millions jackpot

2−128 will essentially never happen For most cryptosystems, there is a
tradeoff between the attacker’s running
time and success probability. For
example, an attacker running in time T
can find a collision in a hash function
with n-bit output with probability
T2/2n. So, as the attack runs for more
time, it has a better chance of finding a
collision.

The takeaway is that if an attacker finds a collision with prob-
ability 2−128, we can be extremely sure that a collision will never
occur.

collision resistance and file authentication 4

3 Constructing a collision-resistant hash function

The current standard for fast collision-resistant hashing is SHA256

(a.k.a. SHA2), which was designed by the NSA in 2001. The SHA2

hash functions are designed using the following common two-step
approach: We can also build collision-resistant

hash functions that are secure under
“nice” cryptographic assumptions,
such as the assumption that factoring
large numbers is hard. Unfortunately,
hash functions based on these nice
assumptions tend to be very slow and,
as a result, are almost never used in
practice.

1. Build a small collision-resistant hash function on a fixed-size
domain Hsmall : {0, 1}2λ → {0, 1}λ. This step is, to some degree,
“more art than science”. The standard practice is to design a hash
function that defeats all known collision-finding attacks. If no
known attack works well, we declare the candidate function to be
collision resistant.

2. Use Hsmall to construct H : {0, 1}∗ → {0, 1}λ. This can be done
very cleanly using the “Merkle-Damgård” approach described
below. This step requires no additional assumptions: we can prove
unconditionally that if Hsmall is collision resistant, then H is as
well.

Another way to build collision-resistant
hash functions is to use the so-called
“sponge” construction. It is similar to
the approach described here in that we
start with a small primitive, which we
assume secure in some sense, and then
we use the small primitive to build a
hash function on a large domain.

3.1 Merkle-Damgård

The Merkle-Damgård construction gives a way to construct a
collision-resistant hash function for all bitstrings (i.e., {0, 1}∗) from
a collision resistant hash function that maps 2λ-bit strings down to
λ-bit strings, sketched out in Figure 1.

0λ Hsmall

m1

Hsmall

m1

. . . Hsmall

mn

Hsmall

Msg length

Output

Figure 1: Sketch of the Merkle-
Damgård construction for a
collision-resistant hash func-
tion.

The Merkle-Damgård construction first splits the message into
λ-sized blocks [m1, . . . , mn] and successively hashes them together. In
the following pseudocode, the function ToBlock converts an integer,
representing the length of the input message in blocks, into a λ-bit
string. Then the Merkle-Damgård construction is: (Here, we are
assuming that the message is at most λ2λ bits long.) In practice, standard hash functions

have limits on the length of the mes-
sages that they can hash. For example,
SHA256 can hash messages of length
up to 264 − 1 bits.

We won’t prove it here, but we can use the fact that Hsmall is
collision-resistant to prove that H must also be collision-resistant. The
basic idea of the proof is to show that given a collision in H, we can
easily compute a collision in Hsmall.

Note: In the Merkle-Damgård construction of Fig. 2, we initialize
the variable b to the all-zeros string. The construction is collision-
resistant if we omit the all-zeros string and start by setting b ← m1

collision resistance and file authentication 5

H(m1, . . . , mn): // Merkle-Damgård construction

• Let b← 0λ.
• For i = 1, . . . , n:

– Let b← Hsmall(b, mi).

• Let b← Hsmall(b,ToBlock(n)).
• Output b.

Figure 2: The Merkle-Damgård
construction of a large-domain
collision-resistant hash func-
tion H from a small-domain
collision-resistant hash function
Hsmall.

and then continue by hashing m2, m3, The construction is not
collision resistant if we omit the length block ToBlock(n) that we hash
in at the end.

3.2 The Birthday Paradox
If you sample 2λ/2 random 10λ-bit
strings and hash them with a hash
function that has λ-bit outputs, you will
find a collision among these inputs with
constant probability.

An important thing to understand when dealing with hash functions
is the “Birthday Paradox,” which states that given a hash function
with λ-bit output, you can always find a collision in time O(

√
2λ) =

O(2λ/2). So, if you want to force an attacker to use at least 2128 to
find a collision, you must use a hash function with at least 256 bits of
output.

3.3 Domain Separation

In many applications, we have a one-input CRHF (such as SHA256)
H : {0, 1}∗ → {0, 1}256 and we need to construct a two-input CRHF
H2(x, y).

Bad idea. An obvious solution to construct the two-input hash
function H2 is to concatenate the two values, so that H2(x, y) =

H(x||y). However, this construction allows two different pairs of
messages to hash to the same value:

H2("key", "value") = H2("ke", "yvalue").

Both Amazon and Flickr had a bug arising from this—they concate-
nated all parameters before hashing, and had parameters such that
two different intents had the same concatenation.2 2 Thai Duong and Juliano Rizzo. Flickr’s

API Signature Forgery Vulnerability.
https://vnhacker.blogspot.com/

2009/09/flickrs- api- signature-

forgery.html. Sept. 2009.
3.4 Length-Extension

Recall the concept of Message Authentication Codes (MAC) from the
last lecture—a code that can be sent along with a message to verify

https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html

collision resistance and file authentication 6

that the message was not changed. (We will see the formal definition
in ??.)

Bad idea. Poorly designed software uses MAC(k, m) = H(k∥m) as a
very simple construction of a MAC. However, this construction has
an easy attack—given MAC(k, m), it is easy to compute MAC(k, m∥m′)
without knowing the key k if H is a hash function built with the
Merkle-Damgård construction. To do this, the attacker hashes the
output of MAC(k, m) with two more blocks—a new message m′′ and
another length block. Now, we have computed MAC(k, m∥m′) where
m′ is the original length block plus some custom message without
knowing the key k.

This problem here is that we were using a hash function that was
only guaranteed to be collision resistant, but we assumed that it
had other properties (such as that it is guaranteed to be difficult to
compute the hash of an extension of the original message). Figure 3

sketches out the length-extension attack on the Merkle-Damgård
construction from Figure 1.

Hash of m1||m2|| . . . ||mn Hsmall

x

Hsmall

Extended length

Output

Figure 3: Sketch of the ex-
tension attack on the Merkle-
Damgård construction, starting
with a hash of m1||m2|| . . . ||mn

to compute the hash of
m1||m2|| . . . ||mn||ToBlock(n)||x.4 Applications: Merkle Trees

In many settings, an origin server has N files (e.g., Android app bi-
naries) and wants to serve these files from potentially untrustworthy
mirror servers (e.g., Akamai servers) distributed around the globe.

To do this, the origin server can put the N files at the leaves of
a binary tree. Then the server hashes together pairs of files, then
hashes each pair of hashes and so on until it eventually ends up with
a single root hash h. The client fetches the root hash h from the origin
server directly.

Later on, the client can download any one of the N files from the
untrustworthy mirror server. The mirror can produce the file, along
with O(log N) hashes—the sibling nodes of each node on every path
from the file’s leaf to the root. The client can use the root hash h it
got from the origin server, along with the additional hashes from the
mirror server, to be convinced that the mirrored file it downloaded
was authentic.
TODO: Add diagram from lecture.

collision resistance and file authentication 7

References

Duong, Thai and Juliano Rizzo. Flickr’s API Signature Forgery Vulner-
ability. https://vnhacker.blogspot.com/2009/09/flickrs-api-
signature-forgery.html. Sept. 2009.

Lenstra, Arjen K, Thorsten Kleinjung, and Emmanuel Thomé. “Uni-
versal security”. In: Number Theory and Cryptography. 2013.

https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html

	Intuition: Collision resistance
	Defining collision resistance (slightly more formally)
	Constructing a collision-resistant hash function
	Applications: Merkle Trees

