
Message Authentication Codes
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have talked about authenticating people and authenticating
files. In this section, we will discuss authenticating communication. If
we have two parties that are communicating over the network, we
want some way to guarantee to each party that the message they
received really came from the other party and was not tampered with
along the way.

At a first glance, this seems impossible. If there is some eavesdrop-
per Eve in between the two parties, they can just replace the message
with one of their own choosing and the other party will have no idea.
To make this possible, we need to relax the scenario a bit and add an
assumption—that the two parties share some secret key k.

With this shared key k between the two parties, our goal will be
to add some “tag” onto the message that validates its authenticity.
Necessarily, this tag will be a function of this shared key k. If this
were not the case, the eavesdropper would be able to compute a valid
tag herself—the secret k is the only information in this scenario that
Eve does not know.

1 Defining message authentication codes

Syntax. A message authentication code (MAC) over key space
K, message spaceM , and tag space T is an efficient algorithm
MAC : K×M→ T . In order for a MAC to be useful, it must be secure,
in the following sense. We first give the definition and then explain
why it is a useful one:

Definition 1.1 (MAC Security: Existentially unforgeability against
adaptive chosen message attacks). A MAC MAC over key space K
and message spaceM is secure (existentially unforgeable against
adaptive chosen message attacks) if any poly-time adversary A wins In practice, “a poly-time adversary”

means “any real-life adversary”. But
we need to place some mathematical
bound on real-life to make the proofs
work out.

the following game with at most negligible probability:

• The challenger samples a MAC key k←R K.
• For i = 1, 2, . . . (polynomially many times)

– The adversary sends any message mi ∈ M to the challenger

– The challenger responds with MAC(k, mi).

• The adversary sends the challenger a message-tag pair (m∗, t∗).
• The adversary wins the game if MAC(k, m∗) = t∗ and m∗ /∈
{m1, m2, . . . , mn}.

A subtlety of this definition is that, even
if the MAC scheme is secure under
this definition, it is possible for an
adversary, given a valid message-tag
pair (m, t) to produce a second valid
message-tag pair (m, t′) on the same
message without knowing the secret
key.

message authentication codes 2

1.1 Intuition for the security definition

To formulate our security notion, we need to define the adversary’s
goal and the adversary’s power.

The adversary’s goal in this definition is to compute a valid MAC
of any message m ∈ M of its choice. It’s not entirely obvious why
we care about the adversary producing a valid MAC on any message:
“If the adversary MACs a message that is jibberish, they are unlikely
to be able to do any harm with it,” you might think. But there will
certainly be applications that authenticate messages that violate
whatever definition of “non-jibberish” we define. So allowing the
adversary to forge a MAC tag on any message makes the definition
as broadly applicable as possible. This has some interesting implications—

importantly, the adversary can store
these messages along with their MAC
and replay them later.

As far as the adversary’s power goes: we, as usual in cryptography,
restrict the adversary to be efficient (i.e., to run in polynomial time).
But in the MAC security game we also allow the adversary to obtain
MAC tags on messages of its choice. This captures the reality that in
many systems, an adversary can trick an honest system into MACing
adversarial messages. For example, if an email-backup system MACs
every email that a user receives, an adversary may be able to obtain
MAC tags on messages of its choice by sending emails to the backup
system.

1.2 MACs require pseudorandomness

The fact that it is even possible to construct a MAC seems a bit
surprising—in effect, for a MAC to satisfy the definition, the tag has
to effectively be random. But the only “randomness” that we have is
the key k—to generate tags for arbitrarily many messages, we need
much more randomness than one key’s worth. This seems impossible.
How can we generate a large number of random-looking tags from
only a single short random key?

We get ourselves out of this conundrum by observing that the
adversary must be an efficient algorithm. So while we cannot generate
a large number of truly random bits from a short key, we can—under
appropriate and reasonable cryptographic assumptions—generate a
large number of bits that look truly random from the perspective of
any efficient algorithm. We call these bits pseudorandom.

This surprising and powerful idea leads us to our next crypto-
graphic primitive. . .

2 Pseudorandom Functions

A pseudorandom function is defined over a keyspace K, and input
space X and output space Y . To be useful a pseudorandom function

message authentication codes 3

must satisfy the following security definition:

Definition 2.1 (Pseudorandom Function, PRF). A function F : K ×
X → Y is a pseudorandom function if all efficient algorithms A win
the following game with probability 1

2 + “negligible”:

• The challenger samples a random bit b← {0, 1} and a key k←R K.
• If b = 0, the challenger sets f (·) := F(k, ·).
• If b = 1, the challenger sets f (·)←R Funs[X ,Y]. Here, Funs is the set of all functions

from X to Y .• Then for i = 1, 2, . . . (polynomially many times):

– The adversary sends the challenger a values xi ∈ X .

– The challenger responds with yi ← f (xi) ∈ Y .

• The adversary outputs a guess b̂ at the bit b.
• The adversary wins if b = b̂.

First, the challenger will sample a random b ← {0, 1} and a key
k← K.

The adversary can trivially win this game with probability 1
2 by

just guessing the bit b at random. This definition asserts that no
efficient adversary can do much better than that.

If we have such a pseudorandom function F, we could easily
construct a MAC—we can just use the message as the input to the
pseudorandom function along with the key: MAC(k, m) := F(k, m).

2.1 Constructing pseudorandom functions from one-wayness

It is not at all obvious that pseudorandom functions should exist at
all! They seem like a very magical primitive indeed.

One surprising fact is that if there exists any function that is “hard
to invert,“ in a sense we will define, then pseudorandom functions
exist. For example, if you believe that factoring large numbers is
difficult (as many people do), then pseudorandom functions exist.

In particular the following definition captures the notion of a
function that is hard to invert:

Definition 2.2 (One-Way Function). A function f : X → Y is a one-way
function if for all efficient adversaries A,

Pr[f (A(f (x))) = f (x) : x ←R X] ≤ “negligible”.

Having defined one-way functions, we now have the following
surprising and non-obvious result: Notice that if P = NP, one-way

functions do not exist, and therefore
psuedorandom functions do not exist.Theorem 2.3. Psueodorandom functions exist if and only if one-way

functions exist.1 1 J. Hastad et al. “A Pseudorandom
Generator from any One-way Function”.
In: SIAM Journal on Computing 28.4
(1999), pp. 1364–1396.

In practice, we assume that:

message authentication codes 4

• the function f (x) := SHA256(x) is a one-way function where the
domain is the set of 256-bit strings,

• the function f (x) := AES(x, 0128) is a one-way function, where the
domain is the set of 128-bit strings, and

• the function f (x) := 2x mod p is a one-way function on domain
{1, . . . , p}, for a sufficiently large prime p.

2.2 Pseudorandom functions in practice

In practice, we use the Advanced Encryption Standard (AES) as
a pseudorandom function. The AES function on key length κ ∈
{128, 192, 256} has the type signature AES : {0, 1}κ × {0, 1}128 →
{0, 1}128. That is, it takes a 128-bit input and generates a 128-bit
output. We don’t have any mathematical

proof that AES is a pseudorandom
function. However, it has undergone a
tremendous amount of cryptanalysis
and the best attacks on AES are only
marginally better than the obvious
brute-force attacks.

3 From pseudorandom functions to MACs

MACs for short messages. Using AES as a pseudorandom function
on a 128-bit domain, we can build a MAC for 128-bit messages as
described above : MAC(k, m) := AESk(m). However, since AES takes
only 128 bits as input, using AES directly, we can only authenticate
128-bit messages.

Insecure ways to construct a MAC for long messages. A bad way to
construct a MAC for long messages from a pseudorandom function
F for 128-bit messages is just to chop our message m up into 128-bit
blocks m = (m1, m2, . . .) and MAC each block separately. Our tag,
then, would look something like (F(k, m1), F(k, m1)). However, there
is a problem! Given the tag t = (t1, t2) for a message m = (m1, m2),
we can easily generate a valid tag t′ = (t2, t1) for a different message
m′ = (m2, m1).

Notice that we cannot use AES as
the pseudorandom function F in this
construction, since AES only takes a
128-bit input. In this case, we would
need a collision-resistant hash function
H : {0, 1}∗ → {0, 1}128, but it is always
possible to find collisions in hash
functions with 128-bit output in time
264. So such a MAC can never be secure
against attackers running in time 264.

MACs for long messages: The easy way. If we have a pseudorandom
function F with an input space of 256-bits, we can construct a MAC
on arbitrary-length messages using the “hash-and-sign” paradigm.
In particular, we use a collision-resistant hash function H : {0, 1}∗ →
{0, 1}256 (??) and we define the MAC on message space {0, 1}∗ as:

MAC(k, m) := F(k, H(m)).

In practice, we typically do not construct MACs in this way be-
cause collision-resistant hash functions are typically more expensive
to compute (per bit of input) than pseudorandom functions, such as
AES.

message authentication codes 5

3.1 MACs for long messages: Cipher-Block Chaining MAC
Applying the PRF to the last block us-

ing an independent random key is im-
portant. If we do not use a new key, an
adversary can mount a length-extension
attack. That is, if the adversary asks for
t = MAC(k, m1) and t′ = MAC(k, t),
t′ is also a valid key for the original
message with two zero blocks attached
MAC(k, m1∥0∥0). The chain of AES
applications becomes equivalent, since
zero blocks are equivalent to skipping
the XOR and adding AES applications.

A common and secure way to construct a MAC for long messages
from a MAC for short messages is to chain the output of each of these
calls to the pseudorandom function. Given our chopped message
(m1, m2, . . . , mn), we will generate t1 = F(k, m1) as before. When
generating t2, we will first XOR t1 into the input: t2 = F(k, m2 ⊕ t1).
This continues until the end of the message, at which point have a tag
tn. Finally, we apply the PRF with a different key k′ to the value tn and
output this tag t← F(k′, tn). This construction is called CBC-MAC or
CMAC.

m1

F(k, ·)

t1

m2

⊕

F(k, ·)

t2

m3

⊕

F(k, ·)

t3 F(k′, ·) t

Figure 1: The CBC-MAC con-
struction.

CBC-MAC is going out of favor for two reasons:

1. It is impossible to parallelize the MAC computation: the chaining
procedure is inherently sequential so you cannot speed it up, even
if you have a computer with many CPU cores.

2. Computing the MAC requires one PRF invocation per block of
the message. There are even faster MACs that require only one
PRF invocation per message total, plus a number of fast “non-
cryptographic” operations per message block. These MACs can be
faster than CBC-MAC on some processors. The GMAC construc-
tion we will see next is one example.

3.2 A parallelizable MAC: Carter-Wegman MAC

We now describe a different way to authenticate long messages. This
MAC scheme is parallelizable and also requires only one single PRF
invocation per message authenticated (independent of the message
length). The construction is named the Carter-Wegman MAC, after
its inventors.2 Modern encryption schemes, including AES-GCM (??) 2 Mark N Wegman and J Lawrence

Carter. “New hash functions and their
use in authentication and set equality”.
In: Journal of computer and system sciences
22.3 (1981).

use a Carter-Wegman-style MAC as a key ingredient.
For this construction, we will use the notation Zp to indicate the

set of integers modulo p with addition and multiplication modulo
p. So x + y ∈ Zp means that we add x and y as integers and reduce
the result modulo p. Typically, we will think of p as a prime—of 64

bits, for example. The construction uses a fixed a prime number p as
a parameter, where p ≈ 2n for security parameter n. So in practice, we take p ≈ 2128 for

128-bit security.

message authentication codes 6

Universal hash function. Before we look at the construction of the
Carter-Wegman MAC, we first define an important building block:
the notion of a universal hash function, or UHF for short. A universal
hash function is keyed, and provides collision-resistance when the
adversary does not know the key. Specifically, we say that H is a
universal hash function if, when an adversary chooses two messages
m and m′ where m ̸= m′,

Pr[H(k, m) = H(k, m′)] ≤ negl.

Intuitively, a universal hash function is a weaker primitive than a
collision-resistant hash function: the adversary does not know the
precise hash function that will be applied to their messages, because
the adversary does not know what key will be used.

One simple and practical construction of a universal hash function
is based on polynomials. Given a long message m, break it up into
fixed-size chunks m0, m1, . . . , ml−1. Then, the hash of that message is In practice, these fixed-size chunks are

going to be 128 or 256 bits long.defined as:

H(k, m0||m1|| . . . ||ml−1) = (m0 +m1k+m2k2 + . . .+ml−1kl−1) mod p

We can give some intuition for why H is a universal hash function
(i.e., collision-resistant for a randomly chosen key). In order for a
pair of messages m and m′ to collide, it must mean that H(k, m) =

H(k, m′), which in turn means that H(k, m)− H(k, m′) = 0. Expanding
the definition of H as a polynomial, this means that

(m0 −m′0) + (m1 −m′1)k + (m2 −m′2)k
2 + . . . + (ml−1 −m′l−1)k

l−1 = 0

which is another way of saying that k is a root of that degree-l − 1
polynomial. We know that there can be at most l − 1 roots of a degree-
l − 1 polynomial, but there are p ≈ 2n possible choices for k, so the
probability that our randomly-chosen k happens to be one of those
roots is l−1

p , which is negligible.

MAC construction. The MAC uses a pseudorandom function F : K×
Zp → Zp. The keyspace for the MAC is K, so the MAC key consists Here, the input space of the pseudoran-

dom function F is the set of integers in
{0, . . . , p− 1}. Given a pseudorandom
function on bitstrings, it is indeed pos-
sible to construct one that operates on
numbers in Zp like this by interpreting
each number as a bitstring.

of a key for the pseudorandom function. The message space for the
MAC isM = Z≤L

p , the set of vectors of integers of Zp elements of
length at most L where L≪ p. Here, assume that the message vector
has length at least 1.

One other difference is that this MAC construction is randomized.
So there are now two algorithms:

message authentication codes 7

• MAC.Sign(k, m) → t, which takes as input a key k and message m
and outputs a MAC tag t, and

• MAC.Verify(k, m, t)→ {0, 1}, which takes as input a key k, message
m, tag t, and outputs an accept/reject bit.

The security definition here is essentially the same as for determin-
istic MACs, except that we use different algorithms to generate and
verify the MAC tags.

The Carter-Wegman MAC construction is then:

MAC.Sign(k, m ∈ Z≤L
p)→ t.

• Compute v← F(k, 0) ∈ Zp.
• Parse the message into chunks as (m1, . . . , mℓ)← m ∈ Zℓ

p.
• Compute M(v)← m1v + m2v2 + m3v3 · · ·+ mℓvℓ ∈ Zp. Essentially we are viewing the blocks

of the message m as coefficients of a
degree-t polynomial M(·). We then
evaluate this polynomial at the secret
point v determined by the MAC key.

TODO: HCG: Check the definition of the message polynomial M. Should there be

an additional vt+1 monomial?

• Sample a nonce r ←R Zp.
• Output t←

(
r, F(k, r) + M(v)

)
∈ Z2

p as the MAC tag.

MAC.Verify(k, m, t)→ {0, 1}.

• Compute v← F(k, 0) ∈ Zp.
• Parse the message into chunks as (m1, . . . , mℓ)← m ∈ Zℓ

p.
• Compute M(v)← m1v + m2v2 + m3v3 + · · ·+ mℓvℓ ∈ Zp.
• Parse the tag (r, z)← t ∈ Z2

p.
• Output “1” if and only if z− F(k, r) = M(v).

For a detailed treatment of Carter-
Wegman security see Boneh and
Shoup’s textbook, A Graduate Course in
Applied Cryptography, Section 7.4.

Security intuition. The security argument here goes as follows:

• First, we appeal to the PRF security property to argue that we can
replace the values F(kF, r) used to generate the tags with truly
random values.

• Next, we show that as long as the MAC.Sign algorithm never
samples the same nonce r twice, the masking values F(k, r) are
independent random values that complete hide the values M(v).
So, the adversary learns no information on the secret point v by
making MAC queries.

• Now, say that the adversary finds a forged message-tag pair
(m∗, t∗). There are two cases:

– Either the forgery uses a fresh random nonce r∗ that did not
appear as the response to any of the adversary’s MAC queries.
In this case, the forgery is only valid with probability 1/p.

message authentication codes 8

– Alternatively, the forger could use a random nonce r∗ that
is equal to the nonce r returned from one of the adversary’s
MAC queries. In this case, we have the following relations,
where message m polynomial M was the message the adversary
queried of the challenger:

F(k, r) = M(v)− z

F(k, r) = M∗(v)− z∗

0 =
(

M(v)−M∗(v)
)
+ (z− z∗).

Since m ̸= m∗, we know z ̸= z∗. So (M(·)−M∗(·)) + (z∗ − z)
is a non-zero polynomial of degree at most t. Since such a
polynomial can have at most ℓ ≤ L zeros in Zp, and since the
adversaries view is independent of the evaluation point v ∈ Zp,
the probability that the adversary’s forgery is valid is at most
ℓ/p.

In either case, the adversary’s probability of forging is O(L)/p =

poly(λ) · negl(λ) = negl(λ) on security parameter λ.

References

Hastad, J. et al. “A Pseudorandom Generator from any One-way
Function”. In: SIAM Journal on Computing 28.4 (1999), pp. 1364–
1396.

Wegman, Mark N and J Lawrence Carter. “New hash functions and
their use in authentication and set equality”. In: Journal of computer
and system sciences 22.3 (1981).

	Defining message authentication codes
	Pseudorandom Functions
	From pseudorandom functions to MACs

