
Digital Signatures
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In the last section, our strategy for authentication depended on two
parties sharing a secret key. In that discussion, we completely left out
of the picture how these parties should exchange this secret key. Our
implication was that they went to some private room and exchanged
the key in secret, but in many cases this is not practical: if they could
whisper a key, why not just whisper the message?

Luckily, there is a way to get around this requirement for a shared
secret using public-key cryptography.1 1 Whitfield Diffie and Martin E Hellman.

“New Directions in Cryptography”. In:
Transactions on Information Theory 22.6
(1976).
The original Diffie-Hellman paper from
1976, which introduced public-key
cryptography, is a fascinating read.

1 Definitions

The basic idea of public-key cryptography, applied to authentication,
is that each party will generate two linked keys—a secret signing
key and a public verification key. The verification key will be good
enough to verify that a signature is valid, but not to generate new
signatures.

Definition 1.1 (Signature Scheme). A signature scheme is asso-
ciated with a message spaceM and three efficient algorithms
(Gen,Sign,Ver). In theoretical papers, people will

write Gen(1λ) to indicate that the key-
generation algorithm takes as input a
length-λ string of ones. This is just a
hack to make the input given to Gen
λ bits long so that the Gen algorithm
can run in time polynomial in its
input length: poly(λ). If we express
λ in binary, then Gen(λ) gets a log2 λ-
bit input and can only run in time
poly(log λ). This distinction is really
unimportant, but if you see the 1λ

notation, you will now know what it
means.

• Gen(λ) → (sk, vk). The key-generation algorithm as input a
security parameter λ ∈ N and outputs a secret signing key sk and
public verification key vk. The algorithm Gen runs in time poly(λ).

• Sign(sk, m) → σ. The signing algorithm takes as input a secret key
sk and a message m ∈ M, and outputs a signature σ.

• Ver(vk, m, σ) → {0, 1}. The signature-verification algorithm takes
as input a public verification key vk, a message m ∈ M, and a
signature σ, and outputs {0, 1}, indicating acceptance or rejection.

For a signature scheme to be useful, a correct verifier must always
accept messages from an honest signer. Formally, we have:

Definition 1.2 (Digital signatures: Correctness). A digital-signature
scheme (Gen,Sign,Ver) is correct if, for all messages m ∈ M:

Pr
[
Ver(vk, m,Sign(sk, m)) = 1 : (sk, vk)← Gen(λ)

]
= 1.

The standard security notion for digital signatures is very similar
to that for MACs (??). The only difference here is that a digital-
signature scheme splits the single secret MAC key into two keys:

digital signatures 2

a secret signing key and a public verification key. Otherwise the
definition is essentially identical.

Definition 1.3 (Digital signatures: Security – existential unforge-
ability under chosen message attack). A digital-signature scheme
(Gen,Sign,Ver) is secure if all efficient adversaries win the following
security game with only negligible probability:

• The challenger runs (sk, vk) ← Gen(λ) and sends vk to the adver-
sary.

• For i = 1, 2, . . . (polynomially many times)

– The adversary sends a message mi ∈ M to the challenger.

– The challenger replies with σi ← Sign(sk, mi).

• The adversary outputs a message-signature pair (m∗, σ∗).
• The adversary wins if Ver(vk, m∗, σ∗) = 1 and m∗ ̸∈ {m1, m2, . . . }.

Notice that this security definition does not guarantee that an
attacker cannot forge a new signature on a message that it has al-
ready seen a signature of. Namely, given a valid message-signature
pair (m, σ) an adversary may be able to produce additional valid
message-signature pairs on the same message: (m, σ′), (m, σ′′),

In some applications, we want to prohibit an attacker from find-
ing any new message-signature pair. We call this security notion
“strong existential unforgeability under chosen message attack.” The
definition is the same as in Definition 1.3 except that we require
the adversary to find a valid-message signature pair (m∗, σ∗) such
that (m∗, σ∗) ̸∈ {(m1, σ1), (m2, σ2), . . . }. Standard digital-signature
schemes, such as the elliptic-curve digital signature algorithm (EC-
DSA) or the RSA algorithm with full-domain hashing (RSA-FDH),
are believed to have this strong security property.

2 Constructing a Signature Scheme

In the following sections, we will show how to construct a digital-
signature scheme from any one-way function (??).

We will generate a signature scheme that is secure, but that has
relatively large signatures and public keys: to achieve security against
attackers running in time 2λ, this signature scheme has signatures
of O(λ2) bits. Widely used modern digital signature schemes (e.g.,
EC-DSA) have signatures of O(λ) bits. One benefit of the signature scheme

that we present here is that—unlike
EC-DSA, RSA, DSA, and other widely
used signature schemes—this one is
plausibly secure even against quantum
adversaries. There is ongoing work
to standardize signature schemes
secure against quantum adversaries;
see https://csrc.nist.gov/projects/

pqc-dig-sig

We will construct this scheme in three stages:

1. Construct a signature scheme for signing a single bit.

2. Construct a one-time secure signature scheme for signing a fixed
length messages. With this scheme, an attacker who sees two

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

digital signatures 3

signatures under the same signing key can forge signatures. In
addition, the secret signing key for this scheme will be larger than
the size of the message being signed.

3. Construct a one-time secure scheme for arbitrary-length messages.
Here, we construct a one-time signature scheme whose secret
signing key is independent of the length of the signed message.

4. Construct a many-time secure scheme (i.e., a fully secure one under
Definition 1.3) for arbitrary-length messages. This last scheme is a
fully secure and fully functional digital-signature scheme.

3 Constructing a Signature Scheme for Signing a Single Bit

This signature scheme is not useful on its own, and is given only as a
step towards the final construction. It uses as a building block a one-
way function f : X → Y . Recall that f a one-way function if it is easy
to compute but hard to invert; namely there is an efficient algorithm
that given x ∈ X outputs f (x), and at the same time any efficient
algorithm given y = f (x) for a random x ← X , finds an inverse
x′ ∈ X such that f (x′) = f (x) with only negligible probability.

• Gen()→ (sk, vk). Choose two random elements x0, x1 from X and In this construction, we leave the
security parameter λ implicit. To be
fully formal, Gen would take λ an input.
The one-way function f and its domain
X would both depend on λ. So we
would write fλ and Xλ.

let (y0, y1) = (f (x0), f (x1)). Output sk = (x0, x1) and vk = (y0, y1).

• Sign(sk, b)→ σ. Parse sk = (x0, x1) and output σ = xb,

• Ver(vk, b, σ) → {0, 1}. Parse vk = (y0, y1) and output 1 if and only
if f (σ) = yb. (Otherwise, the signing routine rejects.)

4 One-time-secure Signatures (Lamport Signatures)

In this section we give a very simple and elegant construction of
a one-time-secure digital signature scheme, due to Lamport.2 The 2 Leslie Lamport. Constructing Digital

Signatures from a One Way Function.
Tech. rep. Oct. 1979.

construction is a straightforward generalization of the signature
scheme constructed above: Each message is signed bit-by-bit, where
each bit is signed using a fresh and independently generated secret
key.

Before giving the construction, we define one-time security for
digital-signature schemes. This signature scheme is not generally
useful on its own, but is useful as a building block.

Definition 4.1 (Digital signatures: One-Time Security). A digital-
signature scheme (Gen,Sign,Ver) over message spaceM is one-time
secure if all efficient adversaries win the following game with negligi-
ble probability:

digital signatures 4

• The challenger generates (sk, vk) ← Gen(λ) and sends vk to the
adversary.

• The adversary sends the challenger single message m ∈ M.
• The challenger responds with σ = Sign(sk, m).
• The adversary outputs (m∗, σ∗).
• The adversary wins the game if Ver(vk, m∗, σ∗) = 1 and m∗ ̸= m.

Lamport signatures. We now construct a one-time secure signature
scheme for messages in {0, 1}n, for some fixed message length n ∈N.
To do this, we will define the following algorithms, which make use
of a one-way function f : X → Y :

• Gen()→ (sk, vk). Choose 2n random elements from X , the domain
of the one-way function f . Arrange these values in to a 2× n matrix,
which forms the secret signing key sk. The public verification key
just consists of the 2n images of these values under the one-way
function f :

sk←
(

x10 . . . xn0

x11 . . . xn1

)
, vk←

(
f (x10) . . . f (xn0)

f (x11) . . . f (xn1)

)
.

• Sign(sk, m) → σ outputs (x1m1 , . . . xnmn), where m1 . . . mn are the
individual bits of the length-n message m ∈ {0, 1}n.

• Ver(vk, m, σ) → {0, 1} parses the the message into bits m =

m1 . . . mn ∈ {0, 1}n and the signature σ into its individual symbols
σ = (x∗1 , . . . x∗n) ∈ X n. The signing routine accepts if, for all
i ∈ {1, . . . , n}:

f (x∗i) = vki,mi . (1)

In other words, the routine accepts if applying the one-way func-
tion f to each symbol of the signature matches the corresponding
value in the verification key. (Otherwise, the signing routine re-
jects.)

This signature scheme has relatively large keys: the verification
key, in particular consists of 2n values, where each is of length Ω(λ)

bits. So the total length is roughly 2nλ bits—much longer than the
n-bit message being signed.

In addition, notice that an adversary who sees signatures on even
two messages can forge signatures on messages of its choice. In
particular:

• The adversary first asks for a signature on the message m0 = 0n. It
receives σ0 = (x10, . . . , xn0).

• The adversary then then asks for a signature on the message
m1 = 1n. It receives σ1 = (x11, . . . , xn1).

digital signatures 5

• At this point, the adversary has the entire secret signing key!

However, we will show that this scheme is indeed one-time secure.

Claim. The Lamport signature scheme is one-time secure under the assump-
tion that f is a one-way function.

Remember that if P = NP, one-way
functions, and also digital signature
schemes, do not exist. So any proof of
security of a digital-signature scheme
will require some sort of cryptographic
assumption.

In cryptography, we generally prove these security claims by
reduction: we will show that if there exists an efficient adversary A
that breaks the security of our scheme, then we can construct an
efficient adversary B that breaks one of our assumptions. If we do
this, we have reached a contradiction to one of our assumptions, so
the first adversary cannot exist.

Proof of Claim. Suppose there exists an adversary A that wins the
one-time-security game of Definition 4.1 with non-negligible prob-
ability ϵ. That is, the adversary can produces (m∗, σ∗) such that
Ver(vk, m∗, σ∗) = 1 and m ̸= m∗ given only σ = Sign(sk, m). We can
then construct an adversary B that can use A to invert the one-way
function. Lamport’s construction shows that if

one-way functions exist, then so do
digital signatures. Can you show that
if digital signatures exist, then so do
one-way functions?

In particular, our adversary B will use algorithm A as a subroutine
to invert the one-way function. We will show that if A wins in the
one-time signature security game often, then algorithm B will invert
the one-way function often, which is a contradiction.

Assume our one-way function is of the form f : X → Y and that
the Lamport signature scheme is on n-bit messages. The one-way-
function adversary B operates as follows:

• The adversary B is given a point y ∈ Y and its task is to produce a
preimage of y under f .

• The adversary B generates a signing keypair as follows:

– It runs the key-generation algorithm for the Lamport signature
scheme (sk, vk)← Gen().

– The adversary chooses a random value i∗ ←R {1, . . . , n} and a
random bit β∗ ←R {0, 1}.

– The adversary sets vki∗ ,β∗ ← y. That is, it inserts the one-way-
function point it must invert into a random location in the
verification key.

• The adversary then sends the verification key vk to the Lamport-
signature adversary A.

• The adversary A asks for the signature on a message m =

m1m2 . . . mn ∈ {0, 1}n.
• If mi∗ = β∗, then algorithm B cannot produce a valid signature on

the message m and it outputs FAIL.
• Otherwise, the algorithm B returns the signature σ = (sk1,m1 , . . . , skn,mn) ∈
X n to algorithm A.

digital signatures 6

• Algorithm A then produces a forged message-signature pair
(m∗, σ∗), where m ̸= m∗.

• Algorithm B parses m∗ = m∗1 . . . m∗n ∈ {0, 1}n and σ∗ = σ∗1 . . . σ∗n ∈
X n. Then:

– If mi∗ = mi, algorithm B outputs FAIL.
– Otherwise, algorithm B outputs x ← σ∗i∗ ∈ X .

First, notice that whenever (m∗, σ∗) is a valid message-signature
pair and whenever algorithm B does not output FAIL, algorithm B
outputs a preimage x ∈ X of point y ∈ Y under the one-way func-
tion f . That is because, by the verification relation (1) for Lamport
signatures,

f (x) = f (σ∗i∗) = vki∗ ,m∗i∗
= vki∗ ,1−mi = vki∗ ,β∗ = y.

Now, we must show that algorithm B does not output FAIL too
often. Since algorithm B chooses the values i∗ and β∗ at random, and
since the adversary A behavior is independent of these values, we can
say:

• the probability of the first failure event is 1/2, since there are two
possible choices of mi∗ and only one of these is bad, and

• the probability of the second failure event is at most 1/n, since
m and m∗ must differ in at least one of n bits, and there is a 1/n
probability that this differing bit is at index i∗.

The events that A breaks the signature scheme and that either
of these failures occur are all independent. Then if A breaks the one-
way function with probability ϵ, our one-way-function adversary B
inverts the one-way function with probability

ϵone-way = ϵ · 1
2
· 1

n
.

The probability of either bad is at most 1/2 + 1/n, by the union
bound. Therefore if algorithm A breaks one-time security of Lam-
port’s scheme with probability ϵ, If ϵ is non-negligible, then ϵone-way =

ϵ/2n is also non-negligible, and we have a contradiction.

5 A one-time signature scheme for arbitrary-length messages

In the Lamport signature scheme (Section 4), the length of the keys
scales with the size of the message being signed. To adapt our
scheme from above into a scheme that works on arbitrary-length
messages without the key growing arbitrarily large, we will use a
strategy called hash-and-sign. In essence, the signing algorithm will Essentially all signature schemes used

in practice use this hash-and-sign
construction.

pass the message through a hash function to generate a fixed-size

digital signatures 7

digest before applying a signature scheme that works only on fixed-
length messages.

This paradigm is called “hash and sign,” and is very common. In
practice, hashing is computationally cheap operation while signing
turns out to be computationally relatively expensive. So it is common
to hash a message before signing it in order to reduce the size of the
message that must be signed.

The following claim gives the general construction:

Claim (Hash-and-sign paradigm). Given a collision-resistant hash
function h : {0, 1}∗ → {0, 1}n and a signature scheme (Gen,Sign,Ver) for
message spaceM = {0, 1}n (such as the one in Section 4), there exists a
signature scheme (Gen′,Sign′,Ver′) forM′ = {0, 1}∗ as follows:

• Gen′ := Gen. The key-generation algorithm is unchanged.

• Sign′(sk, m) := Sign(sk, h(m)). We hash the message using the hash
function h before passing the hashed message to the original signing
function.

• Ver′(vk, m, σ) := Ver(vk, h(m), σ). We use the original Ver to check that
the tag matches hash of the original message.

Security Intuition. Suppose that there exists an efficiency adversary
that breaks (Gen′,Sign′,Ver′). In particular, given ((m1, σ1, . . . , (mt, σt)),
the adversary is able to construct a valid message-signature pair
(m∗, σ∗) such that m∗ /∈ {m1, . . . , mt}. There are then two cases:

1. h(m∗) ∈ {h(m1), . . . , h(mt)}. If this is the case, there is some i ∈ [t]
such that h(m∗) = h(mi). However, h is collision-resistant as in the
definition, so this is a contradiction!

2. h(m∗) /∈ {h(m1), . . . , h(mt)}. Since the message that we pass
to the underlying signature scheme is h(m), this means that
the adversary has found a valid signature for h(m) under the
original scheme (Gen,Sign,Ver) after seeing only signatures of
h(m1) ̸= h(m), . . . , h(mt) ̸= h(mt). This breaks the security of the
underlying signature scheme, which is a contradiction!

Application to Lamport. We can apply the hash-and-sign paradigm
to the Lamport signature scheme from Section 4. We can fix our
input to the Lamport scheme at, for example, 256 bits, and then
run messages through a hash function that outputs 256 bits before
passing them to the Lamport scheme. This gives a one-time-secure
signature scheme for messages of arbitrary length.

digital signatures 8

Recall that we faced a similar problem
in our MAC construction. Why not use
hash and MAC there? The reason is
that we used AES as our PRF, which
takes input of {0, 1}128. As explained
by the birthday paradox, it is possible
to find a collision in an output space of
size 2128 in only time 264! This does not
provide sufficient security for practical
use, as it would be quite practical to
find collisions. If we had a version of
AES that outputted 256 bits, we could
indeed apply hash and sign.

Another reason to not use hash and
MAC is that MACs can be faster to
compute than collision-resistant hash
functions.

Security implications of hash and sign. In practice, hash-and-sign can
actually increase the security of our signature scheme, in a certain
sense. As shown in case 2 above, it is absolutely crucial that the hash
function used is collision-resistant: if not, an adversary can find
messages that cause collisions, and then a signature for one message
will also be a valid signature for the other. However, in practice we
often think of hash functions like SHA256 as behaving like random
oracles. That is, for a hash function h : {0, 1}∗ → {0, 1}λ and a string
x ∈ {0, 1}∗ we think of the value h(x) as being an independently
sampled and uniformly random value from the co-domain of the
hash function, {0, 1}λ. (Of course, a real-world hash function is never
actually a random oracle. A random oracle from h : {0, 1}∗ → {0, 1}λ

would take infinitely many bits to describe, while real-world hash
functions have finite size (and polynomial-size descriptions).)

Recall that the standard security definition for digital signatures
(Definition 1.3) allows the attacker to request signatures on messages
of its choice. If we pass a message through a hash function before
signing it using an underlying signature scheme scheme, however,
we effectively randomize the message—the adversary can no longer
control the input to the underlying signature scheme. This allows us
to define another meaningful definition of security:

Definition 5.1 (Digital signatures: security against random message
attacks). Any efficient adversary given the public verification key
and a list of random message-signature pairs ((m1, σ1), . . . , (mt, σt))

cannot generate a forged message-signature pair (m∗, σ∗) such that
Ver(vk, m∗, σ∗) = 1 and m∗ /∈ {m1, . . . , mt}.

Note that this definition is not good enough on its own—an adver-
sary often does have the ability to generate signatures for messages
of his choice. However, paired with a hash function modeled as a
random oracle, this definition becomes very useful—if the inputs are
passed through the hash function before they are passed to the signa-
ture scheme, they become effectively random. We can even relax the
definition further without losing practicality: by the same logic, with
hash function in front of the signature scheme, what the adversary
needs to sign is really not a message of their choise, but is the hash of
a message of their choice—effectively a random value.

Definition 5.2 (Digital signatures: random security against random
message attacks). Any efficient adversary given vk and a list of
random message-signature pairs ((m1, σ1), . . . , (mt, σt)) and random
m∗ /∈ {m1, . . . , mt} cannot generate σ∗ such that Ver(vk, m∗, σ∗) = 1.

It is possible to formally argue that given a signature scheme
satisfying Definition 5.2 and a random oracle, we can construct a

digital signatures 9

scheme satisfying existential unforgeability under chosen message
attacks.

6 From one-time security to many-time security

After applying the hash-and-sign strategy above to our Lamport
scheme, we have a signature scheme that is one-time secure for mes-
sages of arbitrary length. In order for the scheme to be useful and
satisfy our security definition, we need to be able to sign polynomi-
ally many messages with a single key pair. To do this, we will use
a construction very similar to the Merkle tree construction we have
seen before.

Informally, we will build up a binary tree of Lamport keys of
depth 256. The signing key in each of the 2256 leaf nodes will be
used to actually sign messages; we will use a random leaf node
to sign a message, so the fact that there are 2256 of them means
that the probability of accidentally choosing the same leaf twice is
negligible (2−128). The signing key in an intermediate nodes (and in
the root) will be used to sign the (public) verification keys of the two
corresponding child nodes in the tree. Fig. 1 shows a sketch of this
tree.

skε, σε = Sign0(skε, vk0||vk1))

sk0, σ0 = Sign0(sk0, vk00||vk01)

sk00, σ00

.

sk01, σ01 = Sign0(sk01, vk010||vk011)

.

sk1, σ1

sk10, σ10

.

sk11, σ11

.

Figure 1: Sketch of the tree
of Lamport signature keys
used for the many-time secure
signature construction.

Importantly, every signing key in the tree will be used to sign only
one message ever: the key at non-leaf nodes will only ever sign the
pair of its children, and the key at leaf nodes will only ever be used
to sign a single message.

The signature, in this scheme, will consist of the signatures and
verification keys along the path from the root to the chosen leaf node.
The signature will also include information about which child node
was chosen.

This tree, of course, is impractically large, but we can solve that
problem by lazily constructing it using a pseudorandom function.
That is, instead of actually building up all of the leaves of the tree, we
will build up the tree (i.e., generate the signing keys, verification keys,
and signatures) on-demand, and furthermore, we will build it in a

digital signatures 10

deterministic way using the pseudorandom function, so that we don’t
have to remember what parts we might have already computed in the
past.

To make the construction more precise, we will assume that we are
given:
• a pseudorandom function f with keyspace K, and
• a one-time secure signature scheme (Gen0,Sign0,Ver0).
We will need the ability to run the (non-deterministic) Gen0 algorithm
on specific randomness, so as to make it deterministic. For a PRF key
k ∈ K and string s, we will write Gen

F(k,s)
0 () to indicate the process

of running the key-generation algorithm Gen0 using randomness
derived from the output of the PRF F(k, s). We will assume the use
of SHA256 (with a 256-bit digest length) as a collision-resistant hash
function. Using these building blocks, we will construct a many-
time secure signature scheme (Gen,Sign,Ver) for arbitrary-length
messages (i.e., on message space {0, 1}∗), where all of the algorithms
are efficient (poly(·) running time).

Our construction is as follows:

• Gen()→ (sk, vk):

– Sample a fresh PRF key k←R K.

– Set (skϵ, vkϵ)← Gen
F(k,“”)
0 ().

– Output (sk, vk)← (k, vkϵ).

• Signt(k, m)→ σ:

– Choose a random 256-bit value r = (r1 . . . r256) ∈ {0, 1}256).

– Compute (skr, vkr)← Gen
F(k,r)
0 ()

– Compute σr ← Sign0(skr, SHA256(m)).

– Compute σε, vk0, vk1, σr1 , vkr10, vkr11, σr1r2 , . . ., σr1r2 ...r255 ,
vkr1r2 ...r2550, vkr1r2 ...r2551 as shown in Fig. 1.

– Output σ← (r, σε, vk0, vk1, σr1 , vkr10, vkr11, . . . , σr).

• Vert(vkϵ, m, σ)→ {0, 1}:

– Parse (r, σε, vk0, vk1, σr1 , vkr10, vkr11, . . . , σr)← σ.

– Output “1” if and only if

* Ver0(vkr, σr, SHA256(m)) = 1 and

* Ver0(vkx, σx, vkx0||vkx1) = 1 for every prefix x of r (from ε

to r1r2 . . . r255).

digital signatures 11

7 Choosing Signature Schemes

The signature scheme we presented in Section 6 is not particularly
efficient in terms of signature size.

Algorithm vk size σ size signatures/sec verifications/sec
SPHINCS+-128 32 B 8000 B 5 750

RSA 2048 256 B 256 B 2,000 50,000

ECDSA256 32 B 64 B 42,000 14,000

Table 1: Statistics about vari-
ous signature schemes used in
practice

Many deployed systems today use the ECDSA256 signature
scheme. Legacy application still use RSA signatures, though be-
cause of their relatively large public-key and signature sizes, few new
applications use these schemes. Hashing is much, much faster than

signing—the commonly used SHA256

hashing algorithm can compute around
10,000,000 hashes per second. This is
one reason the hash-and-sign paradigm
is so useful.

References

Diffie, Whitfield and Martin E Hellman. “New Directions in Cryptog-
raphy”. In: Transactions on Information Theory 22.6 (1976).

Lamport, Leslie. Constructing Digital Signatures from a One Way Func-
tion. Tech. rep. Oct. 1979.

	Definitions
	Constructing a Signature Scheme
	Constructing a Signature Scheme for Signing a Single Bit
	One-time-secure Signatures (Lamport Signatures)
	A one-time signature scheme for arbitrary-length messages
	From one-time security to many-time security
	Choosing Signature Schemes

