
Factoring integers
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

The problem of integer factorization was central to 20th-century cryp-
tography. Breaking the one-wayness of the RSA trapdoor one-way
function (??), for example, is no harder than factoring integers. In this
chapter, we will see a couple of surprisingly powerful algorithms for
factoring integers.

We will only consider factoring numbers of the form N = pq, for
distinct odd primes p and q. (The general case is not too much more
challenging.) Throughout, let n = ⌈log2 N⌉ be the bitlength of the
number to factor.

1 Background

Trial division. We can factor N by trying to divide N by each of the
primes of size ≤

√
N and checking whether the result is an integer. If

so, we have found a factor of N. Since at least one of the two factors
of N is in {1, . . . ,

√
N}, this algorithm (“trial division”) runs in time

roughly
√

N = 2n/2.
Trial division is an exponential time algorithm, since it runs in time

2Ω(n), where the bitlength n is the size of the number to be factored.
The best known factoring algorithms run in sub-exponential time 2O(nc),
for some constant c < 1.

Euclid’s algorithm. An important subroutine in almost all factoring
algorithms is Euclid’s polynomial-time algorithm for computing the
greatest common divisor of two integers x and y. In this discussion, we draw on Arjen

Lenstra’s very nice survey on factor-
ing Arjen K Lenstra. “Integer factoring”.
In: Designs Codes, and Cryptography
19.2/3 (2000).

The principle of Euclid’s algorithm is that

gcd(x, y) = gcd(x, y mod x) and gcd(x, 0) = x.

So, for example, if we want to compute gcd(46, 12), we can compute
it as:

gcd(46, 12) = gcd(12, 10) = gcd(10, 2) = 2.

Difference of squares. The second key idea is that, if we can find two
numbers x, y ∈ Z whose squares are congruent modulo N, we can



factoring integers 2

use these numbers to factor N:

x2 = y2 (mod N)

x2 − y2 = 0 (mod N)

(x + y)(x− y) = 0 (mod N)

If x = ±y, then this relation is not helpful to us. But if x ̸= ±y, It is not necessarily obvious that the
useful pairs (x, y) will ever exist. The
key idea is that, modulo N = pq, ever
number in Z∗N either has four square
roots or has none. If an element in Z∗N
has four square roots then the roots are
of the form r,−r, s,−s. In this case, a
pair (±r,±s) yields the sort of relation
that we need to factor.

then we know that x + y ̸= 0 mod N and x − y ̸= 0 mod N. So we
have:

(x + y)(x− y) = kN ∈ Z,

for some positive integer k ∈ Z. Then x + y must be a multiple of one
of the factors of N (but not both), and gcd(x + y, N) reveals a factor of
N.

The goal of many factoring algorithms—including the one we
will see today—is finding these integers x and y whose squares are
congruent modulo N.

2 Dixon’s algorithm

Dixon’s algorithm is one of the simplest sub-exponential-time factor-
ing algorithms. It gives a fast method for finding two numbers whose
squares are congruent modulo N. Once we have these squares, we
can use them to factor as in Section 1

2.1 The idea

The principle of Dixon’s algorithm is that we will pick many random
numbers r ∈ Z∗N and square them modulo the integer N we would
like to factor.

Say that we are somehow able to find numbers r, r′ such that

r2 = 2 · 32 · 5 (mod N)

r′2 = 2 · 5 (mod N),

then we know that:

(rr′)2 = 22 · 32 · 52 (mod N)

(rr′)2 = (2 · 3 · 5)2 (mod N)

and now we have two numbers whose squares are congruent modulo
N:

x = rr′ and y = 2 · 3 · 5.

If we are lucky, this is the useful type of congruence that we can use
to factor N (i.e., rr′ ̸= ±2 · 2 · 5 mod N).



factoring integers 3

The principle of Dixon’s algorithm is to generate many such rs
and then use linear algebra to find a subset of them whose product
modulo N is a perfect square.

2.2 The algorithm

Input: An integer N = pq for odd primes p and q. A parameter
B ∈N, which we refer to as “the size of the factor base.”

Output: The factors (p, q) of N.

1. Collect linear relations. Maintain a list L of pairs of (a) an element
in Z∗N and (b) vectors over ZB

2 . Repeat until L contains B + 1 pairs:

• Sample r ←R Z∗N .

• Compute s← (r2 mod N).

• Attempt to write s as a product of the first B primes:

s = 2e2 3e35e5 . . .

If a number completely splits into
prime factors ≤ B, we say that the
number is “B-smooth.”• If successful, add the pair (r, (e2, e3, e5, . . . )) to the list L.

2. Solve linear system. Let L = {(r1, v1), (r2, v2), . . . }. Find a non-
zero combination of the vectors in L that sums to zero modulo 2.
That is, find S ⊆ [B + 1] such that

∑
i∈S

vi = (0, 0, 0, · · · , 0) ∈ ZB
2 .

Letting We can find the set S using Gaussian
elimination in roughly B3 time. Since
the set of vectors will be extremely
sparse, there are faster methods that
implementers use in practice.

(e2, e3, e5, . . . )← ∑
i∈S

vi,

we then have a difference of squares:(
∑
i∈S

ri

)2

= (2(
e2
2 ) · 3(

e3
3 ) · 5(

e5
2 ) · · · )2 (mod N).

3. Use Euclid’s algorithm to try to factor N. We can take:

x =

(
∑
i∈S

ri

)
y = 2(

e2
2 ) · 3(

e3
3 ) · 5(

e5
2 ) · · · )

and compute gcd(x + y, N). With probability roughly 1/2, over the
random choice of the rs, this will yield a factor of N.



factoring integers 4

2.3 The analysis.

The costs of the three steps of the algorithms are:

1. Each iteration of the loop requires us to try to factor a number into
primes ≤ B. We can factor in this way by trial division using time
roughly B. I’m ignoring any log B factors, which

do matter very much in practice.
The question then is how many trials it will take for us to find a
single smooth number. For a smoothness bound B, let’s say for
now that it takes T(B) trials—we will look into the precise value of
T(B) in a moment..

2. Solving the linear system using Gaussian elimination takes
roughly B3 time.

3. Run Euclid’s algorithm—the time required here is negligible
compared to the time of the first two steps. This step runs in time
poly(log N) = poly(n).

Putting everything together, we have that factoring an n-bit num-
ber with a factor base of size B takes time:

B · T(B) + B3 + poly(n). (1)

Smoothness probabilities. The key question that we need to answer to
complete the analysis is

“If we pick an integer uniformly at random from {1, . . . , N}, what is
the probability that the integer will be B-smooth?”

The convention is to denote the number of B-smooth numbers in
{1, . . . , N} as Ψ(N, B). When B is “not too small,” we have: For many more details on these es-

timates, take a look at Granville’s
very nice survey on smooth num-
bers. Andrew Granville. “Smooth
numbers: computational number theory
and beyond”. In: Algorithmic number
theory: lattices, number fields, curves and
cryptography 44 (2008), pp. 267–323

Ψ(N, B) ≈ N · u−u+o(1) for u =
log N
log B

.

The probability of a random number modulo N being B-smooth is
then Ψ(N, B)/N and the expected number of tries it will take for us
to find a smooth number is:

T(B) = 1/Ψ(N, B).

We are being slightly imprecise—we
actually need to know the number of
squares (quadratic residues) modulo
N that are smooth. But heuristically,
we can assume that quadratic residues
behave like random integers modulo N
for the purposes of smoothness.

Now we can plug this estimate into the expression (1) for the
running time of Dixon’s algorithm and we can solve for the value
of B that minimizes the running time. In particular, to minimize the
running time we want:

B ≈ T(B) ≈ N/Ψ(N, B) = uu,



factoring integers 5

for u = (log N)/(log B).

B = uu

log B = u log u

log B =
log N
log B

log
log N
log B

log2 B ≈ log N log log N

log B ≈
√

log N log log N

B ≈ exp(
√

log N log log N).

If we plug this value of B into Dixon’s algorithm, we get a running
time of

exp(O(
√

log N log log N) = 2O(
√

n log n).

References

Granville, Andrew. “Smooth numbers: computational number theory
and beyond”. In: Algorithmic number theory: lattices, number fields,
curves and cryptography 44 (2008), pp. 267–323.

Lenstra, Arjen K. “Integer factoring”. In: Designs Codes, and Cryptogra-
phy 19.2/3 (2000).


	Background
	Dixon's algorithm

