
RSA Signatures
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In this chapter, we will discuss the RSA digital-signature scheme. The
RSA paper1 was tremendously influential because it gave the first

1 Ronald L. Rivest, Adi Shamir, and
Leonard Adleman. “A method for
obtaining digital signatures and public-
key cryptosystems”. In: Communications
of the ACM 21.2 (1978), pp. 120–126.

constructions of digital signatures and public-key encryption. (We
will talk about public-key encryption in detail later on.)

The RSA cryptosystem is going out of style for a few reasons: gen-
erating RSA keys is relatively expensive and the keys are relatively
large (4096 bits for RSA versus 256 bits for more modern elliptic-
curve-based cryptosystems). In addition, a large-scale quantum
computer could—in theory, at least—break RSA-style cryptosystems.

The RSA cryptosystem is worth studying for a few reasons:

• RSA’s security is related to the problem of factoring large inte-
gers, which is (arguably) the most natural “hard” computational
problem out there.

• RSA gives the only known instantiation of a trapdoor one-way
permutation, which we will define shortly.

• RSA has a number of esoteric properties that are useful for ad-
vanced cryptographic constructions. For example, it gives a
“group of unknown order.” See Boneh-Shoup, Chapter 10.9 for
details.

• RSA signatures are used on the vast majority of public-key certifi-
cates today.2 2 As of today, around 94% of certificates

in the Certificate Transparency logs
use RSA signatures: https://ct.
cloudflare.com/.

The most commonly used type of RSA signatures (“PKCS #1 v1.5”)
is more complicated—and no more secure—than the construction
we describe here, but that construction is still used for historical
reasons.

1 Trapdoor one-way permutations

RSA implements a trapdoor one-way function. Informally, a trapdoor
one-way function is a function that is easy to compute in the forward
direction but that is hard to invert except to someone knowing a
secret key. So it is like a one-way function with a “trapdoor” that
allows efficient inversion.

RSA actually implements a trapdoor one-way permutation—that is,
it maps an input space onto itself with no collisions.

https://toc.cryptobook.us/book.pdf#page=436
https://ct.cloudflare.com/
https://ct.cloudflare.com/


rsa signatures 2

OWF Trapdoor OWS/OWP

easy easy

-- F(x) - F(pk,x)88. 8

· ⑧- hard
hard I

easy with
Secret Key Sk

OWF Trapdoor OWS/OWP

easy easy

-- F(x) - F(pk,x)88. 8

· ⑧- hard
hard I

easy with
Secret Key Sk

Figure 1: A one-way function
(at left) is hard to invert on
random inputs. A trapdoor one-
way function/permutation (at
right) is a function keyed by a
public key. The function is easy
to invert given the secret key
and is hard to invert otherwise.

1.1 Definition

Formally, a trapdoor one-way permutation over input space X is a
triple of efficient algorithms: If we wanted to be completely formal,

the input space would be parameter-
ized by the security parameter λ. So
we would have a family of input spaces
{Xλ}λ∈N—one for each choice of λ.
This way the input space can grow
with λ.

• Gen(1λ) → (sk, pk). The key-generation algorithm takes as input
the security parameter λ ∈ N, expressed as a unary string, and
outputs a secret key and a public key.

• F(pk, x)→ y. The evaluation algorithm F takes as input the public In the RSA construction, the input
space X depends on the public key, but
we elide that technical detail here.

key pk and an input x ∈ X , and outputs a value y ∈ X .

• I(sk, y) → x′. The inversion algorithm I takes as input the secret
key sk and a point y ∈ X , and outputs its inverse x ∈ X .

Correctness. Informally, we want that for keypairs (sk, pk) output by
Gen, we have that F(pk, ·) and I(sk, ·) are inverses of each other. More
formally, for all λ ∈N, (sk, pk)← Gen(1λ), and x ∈ X , we require:

I(sk, F(pk, x)) = x.

Security. Security requires that F(pk, ·) is hard to invert (in the sense
of a one-way function) on a randomly sampled input in the input
space X , even when the adversary is given the public key pk. That
is, for all efficient adversaries A, there exists a negligible function
negl(·) such that

Pr

[
A(pk, F(pk, x)) = x :

(sk, pk)← Gen(1λ)

x ←R X

]
≤ negl(λ).

When we use the RSA cryptosystem, we make the assumption that
the RSA function is hard to invert given only the public key:

Definition 1.1 (RSA Assumption). The RSA function (Gen, F, I) is a
trapdoor one-way permutation.



rsa signatures 3

IMPORTANT: Just as a one-way function is only hard to invert on
a randomly sampled input, a trapdoor one-way function is only hard
to invert on a randomly sampled input. Many of the cryptographic
failures of RSA come from assuming that the RSA one-way function
is hard to invert on non-random inputs.

1.2 Digital signatures from trapdoor one-way permutations

This construction is called “full-domain hash.”3 The construction 3 Mihir Bellare and Phillip Rogaway.
“Random oracles are practical: A
paradigm for designing efficient
protocols”. In: ACM Conference on
Computer and Communications Security.
1993.

makes use of a hash function H and resulting signature scheme is
secure, provided that we model the hash function H as a “random
oracle.”

In other words, to argue security, it is not sufficient to show that H
is, for example, collision resistant. Instead, we can only prove security
provided that we pretend that H is a truly random function—i.e., in
the random-oracle model. When we instantiate the hash function H
with some concrete cryptographic hash function, such as SHA256, we
hope that the resulting signature scheme is still secure. In practice,
this approach works quite well.

One way to think about it is that if a signature scheme is secure in
the random-oracle model, then the concrete signature scheme is in
some sense secure against attacks that do not exploit the peculiarities
of the hash function.

In the construction, we use:

• a trapdoor one-way permutation (Gen, F, I), and

• a hash function H : {0, 1}∗ → X , which we model as a random
oracle in the security analysis.

Construction. We construct a digital-signature scheme (Gen,Sign,Ver)
as follows:

• Gen – Just run the key-generation algorithm for the trapdoor one-
way permutation.

• Sign(sk, m) → σ. Hash the message down to an element h of the
input space X of the trapdoor one-way permutation using the
hash function H. Then invert the trapdoor one-way permutation at
that point:

– Compute h← H(m).

– Output σ← I(sk, h).

• Ver(pk, m, σ)→ {0, 1}.

– Compute h′ ← H(m).



rsa signatures 4

– Accept if F(pk, σ) = h′.

Notice that the use of a hash function here is critical to security,
since (in the random oracle) it means that forging a signature is as
hard as inverting F on a random point in its co-domain. Without the
hash function, forging a signature is only as hard as inverting F on an
attacker-chosen point in its co-domain, which could be easy.

Correctness. For all λ ∈ N, (sk, pk) ← Gen(1λ), and m ∈ {0, 1}∗, we
have:

Ver(pk, m,Sign(sk, m)) = 1{F(pk, I(sk, H(m))) = H(m)}
= 1{I(sk, F(pk, I(sk, H(m)))) = I(sk, H(m))}

and by correctness of the trapdoor one-way permutation:

= 1{I(sk, H(m)) = I(sk, H(m))} = 1.

Security. The intuition here is that if the adversary cannot invert F, it
cannot find the preimage of H(m) under F for any message on which
it has not seen a signature. See Boneh-Shoup Chapter 13.3 for the full
security analysis.

2 The RSA construction: Forward direction

The algorithms for key-generation and for evaluating the RSA permu-
tation in the forward direction are not too complicated.

In what follows, we present RSA with public exponent e = 5.
The same construction works with many other choices of e, just
by replacing all of the “5”s below with some other small prime: 3,
7, 13, etc. A popular choice of the public exponent e in practice is
e = 216 + 1. The complexity of computing the RSA function in the
forward direction scales with the size of e, so we prefer small choices
of e.

• Gen(1λ)→ (sk, pk). In practice, we usually take the
bitlength of primes to be λ = 1024
or λ = 2048.– Sample two random λ-bit primes p and q such that p ≡ q ≡ 4

(mod 5). Standard RSA implementations require
the weaker condition that the public
exponent e shares no prime factors with
p − 1 and q − 1. Using the stronger
condition here simplifies the inversion
algorithm.

– Set N ← p · q.

– Output sk← (p, q), and pk = N.

• F(pk = N, x)→ y.

– The input space for the RSA function is
X = Z∗N—the set of elements in {0, 1, 2, . . . , N − 1} relatively
prime to N.

https://toc.cryptobook.us/book.pdf#page=550


rsa signatures 5

– Output y← x5 mod N.

Remark 2.1. The key-generation algorithm relies on us being able
to sample large random primes. One perhaps surprising fact is
that there are many many large primes. In particular, if you pick a
random λ-bit number, the probability that it is prime is roughly 1/λ. For more on this, look up the Prime

Number Theorem.We can sample a random λ-bit prime by just picking random
integers in the range [2λ, 2λ+1) until we find a prime. We can test for
primality in ≈ λ4 time using the Miller-Rabin primality test. We also
need that there are infinitely many primes congruent to 4 mod 5, but
fortunately there are. Generating RSA keys is expensive—it can take
a few seconds even on a modern machine.

Notice that computing the RSA function in the forward direction is
relatively fast: it just requires three multiplications modulo a 2048-bit
number N. That is, to compute x5 mod N, we compute:

(x2)2 · x = x5 mod N.

Before describing the RSA inversion algorithm, we discuss why
the RSA trapdoor one-way permutation should be hard to invert
without the secret key.

2.1 Why should the RSA function be hard to invert?

To invert the RSA function, the attacker’s is effectively given a value
y ←R ZN and must find a value x such that x5 = y mod N. Or, put
another way, the attacker’s task is essentially the following:

• Given: A polynomial p(X) := X5 − y ∈ ZN [X], for y←R ZN .

• Find: A value x ∈ ZN such that p(x) = 0 ∈ ZN .

So the attacker must find the root of a polynomial modulo a
composite integer N.

The premise of RSA-style cryptosystems is that we only know of
essentially two ways to find roots of polynomials modulo N:

• Factor N into primes and find a root modulo each of the primes.
(We will say more on this in a moment.) Since the best algorithms

for factoring run in time roughly 2
3
√

log N = 2
3√λ, this approach is

infeasible at present without knowing the factorization of N. In ?? we present a factoring algorithm
that runs in sub-exponential time

2
√

log N log log N .• Find a root over the integers and reduce it modulo N. For exam-
Actually, it suffices to find a root
over the rational numbers, but the
distinction isn’t important here.

ple, it is easy to find a root of polynomials such as:

X + 4 = 3 mod N,

X + 2Y = 5 mod N,

X2 = 9 mod N, and

X2 − 3x + 2 = (X− 2)(X− 1) = 3 mod N.



rsa signatures 6

When y ←R ZN , the probability that y is a perfect 5-th power, and There are many clever attacks for
solving polynomial equations modulo
composites that work in certain special
cases, but for most purposes these are
the two known attacks.

thus that there is an integral root to X5 − y, is 5
√

N/N ≈ 2−4λ/5,
which is negligible in the security parameter λ. So solving this
equation over the integers is a dead end.

Is inverting the RSA function as hard as factoring the modulus? No
one knows—the question has been open since the invention of
RSA. We do know that finding roots of certain polynomial equa-
tions, such as p(X) := X2 − y mod N for random y ←R ZN is as
hard as factoring the modulus N. But for RSA-type polynomials,
the answer is unclear.

3 The RSA construction: Inverse direction

To understand how the inversion algorithm works, we will need
some number-theoretic tools.

3.1 Tools from number theory

For a natural number N, let ϕ(N) denote the number of integers in
ZN = {1, 2, 3, . . . , N} that are relatively prime to N. When p is prime Two natural numbers are relatively prime

if they share no prime factors.ϕ(p) = p− 1. The function ϕ(·) is called Euler’s totient function.
When N = pq is the product of two distinct primes, ϕ(N) =

(p − 1)(q − 1). That is so because all numbers in ZN are relatively
prime to N except N and the multiples of p and q:

p, 2p, 3p, . . . , (q− 1)p, q, 2q, 3q, . . . , (p− 1)q.

So there are N − (q− 1)− (p− 1)− 1 = (p− 1)(q− 1) numbers in
ZN relatively prime to N.

Theorem 3.1 (Euler’s Theorem). Let N be a natural number. Then for all
a ∈ Z∗N ,

aϕ(N) = 1 mod N.

Proof. Consider the sets Z∗N and {ax mod N | x ∈ Z∗N}. These sets
are equal, so the product of the elements in the two sets is equal. Let
X ← ∏x∈Z∗N

x mod N. Then

X = aϕ(N)X mod N ⇒ 1 = aϕ(N) mod N.

Lemma 3.2. Let p and q be distinct primes congruent to 4 modulo 5. Define
the integer d = ϕ(N)−4

5 + 1. Then 5d ≡ 1 mod ϕ(N).



rsa signatures 7

Proof. Observe that

p ≡ 4 mod 5 ⇒ ϕ(N)− 4 ≡ 0 mod 5,

so ϕ(N)−4
5 is an integer and thus d is well defined. Then 5d = ϕ(N)−

4 + 5 = 1 mod ϕ(N).

3.2 Inverting the RSA function

With the number theory out of the way, we can now describe how
to invert the RSA function. All we have to do is to show how to
compute a fifth root of y mod N.

• I(sk, y)→ x.

– The secret key sk consists of the prime factors p, q of N. Recall
that ϕ(N) = (p− 1)(q− 1).

– Compute the integer d← ϕ(N)−4
5 + 1, as in Lemma 3.2. We sometimes call d the private exponent

in RSA.
– Return yd mod N.

It is not obvious why the inversion algorithm is correct. Say that
y = x5 mod N. Then:

yd = (x5)d mod N

= x5d mod N

= xk·ϕ(N)+1 mod N, for some k ∈ Z, by Lemma 3.2

= x · (xϕ(N))k mod N

= x mod N, by Theorem 3.1.

We could write 5d = kϕ(N) + 1 because from Lemma 3.2, we know
that 5d ≡ 1 mod ϕ(N).

Using other public exponents. For our RSA-inversion algorithm to
work, we need only to compute the multiplicative inverse e modulo
ϕ(N). That is, we need to compute an integers d such that ed ≡
1 mod ϕ(N). Such an inverse always exists when e and ϕ(N) =

(p− 1)(q− 1) are relatively prime. RSA implementations typically
use the extended Euclidean algorithm to compute the multiplicative
inverse of e modulo ϕ(N). That algorithm is more general, but the
one we used in Lemma 3.2 is simpler and is self-contained.

Inverting RSA is easy on a negligible fraction of points. Recall the RSA
is If the preimage under the RSA function of a point y is very very
small, then If x < N1/5, then computing x given y = x5 mod N is
easy.



rsa signatures 8

Is inverting RSA as hard as factoring the modulus N? The inversion
algorithm we showed here requires knowing the prime factors of the
modulus N. Inverting RSA is thus no harder than factoring N.

Is inverting RSA as hard as factoring N? In particular, if we have
an efficient algorithm A that inverts RSA, can we use A to factor the
modulus N? No one knows!

Most cryptographers, I would guess, believe that inverting the
RSA function is as hard as factoring. But for all we know, it could
be that computing fifth roots modulo N is easier than factoring the
modulus.

References

Bellare, Mihir and Phillip Rogaway. “Random oracles are practical: A
paradigm for designing efficient protocols”. In: ACM Conference on
Computer and Communications Security. 1993.

Rivest, Ronald L., Adi Shamir, and Leonard Adleman. “A method
for obtaining digital signatures and public-key cryptosystems”. In:
Communications of the ACM 21.2 (1978), pp. 120–126.


	Trapdoor one-way permutations
	The RSA construction: Forward direction
	The RSA construction: Inverse direction

