
Public-key Infrastructure
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In the last chapter, we discussed digital signatures, which allow us
to authenticate messages without a shared secret. For example, if I
have the public signature-verification key of the university dean, I can
verify that signed emails from the dean really came from her and not
from someone pretending to be her. But to verify the signature on
the dean’s message, I need to know her signature-verification key vk.
How can I (the recipient) obtain this verification key without a secure
channel to the dean (the sender)?

Unfortunately, there are no perfect solutions to this problem. In
this section, we will discuss some of the approaches that we use in
practice.

1 Public-key infrastructure

The goal of a public-key infrastructure is to facilitate the mapping
of human-intelligible names to signature-verification keys. Ex-
amples of human-intelligible names that we map to keys are: email
addresses, domain names, legal entities, phone numbers, and user-
names (e.g., within a company).

We can think of the public-key infrastructure as implementing the
following (grossly simplified) API:

IsKeyFor(vk, name)→ {0, 1}.

That is, given a verification key vk and a name name, the public-key
infrastructure gives a way to check whether this mapping is valid.

We now discuss some ways to implement this API.

2 Option 1: Use verification keys as names

One option is to just refer to everyone by the bytes of their signature-
verification key. This way, there is no need to do a messy name-to-
verification-key translation at all.

This is not practical for humans generally: it would be difficult to
remember your friends’ names if you had to call them by random 32-
byte strings! However, some digital services such as Bitcoin indeed
use verification keys as identities: when you want to transfer Bitcoin
to someone, you send the coins to an account identified by their
public key. The public key is name of that account.

Using keys as names has a two major problems:



public-key infrastructure 2

• Verification keys are hard to remember. Things like email ad-
dresses, domain names, kerberos usernames, phone numbers, and
so on, are much easier for humans to remember.

• There is no way to update the name-to-key mapping. If you lose
the secret key associated with your name/account, there is no way
to “update” the key to a new value. In practice, people lose their
secret keys all the time, so supporting key updates is critical in
most systems.

3 Trust on first use (TOFU)

Another strategy is to avoid having any global mapping from names
to verification keys. Instead, a client can just accept the first verifica-
tion key that it sees associated with a given name. The secure shell
system (SSH) uses TOFU for key management by default.

In particular, the key-validation logic looks like this:

keymap← {}.

IsKeyFor(vk, name) :
• If keymap[name] is undefined:

– Set keymap[name]← vk.
– Return true..

• Else: Return keymap[name] == vk.

That is, the client will accept the first verification key it sees associ-
ated with a particular name. Later on, the client will only accept the
same verification key for that name.

TOFU is very simple to implement and provides a meaningful
security guarantees. There are two drawbacks:

• If the first key that client receives for a particular name is incorrect/attacker-
generated, the attacker can forge signatures under that name.

• It is not clear with TOFU how to handle key updates. In most
systems that use TOFU, whenever the sender’s key changes, the
system notifies the user and allows them to accept or reject the
new key. The burden is then on the user to figure out whether the
sender really did change their signing keypair, or whether there is
an attack in progress.

4 Certificates

Another option is to rely on a few parties to manage the mapping of
names to public keys. These entities are called Certificate Authorities



public-key infrastructure 3

(CAs). Your operating system and web browser typically come
bundled with a set of roughly 100 public signature-verification keys,
owned by each of 100 CAs.

Whenever the owner of website example.com, for example, gen-
erates a new public key vkexample.com, the website owner can ask
a certificate authority to certify that vkexample.com really belongs to
example.com. The certificate authority does this by signing the pair
(example.com, vkexample.com) using its own signing keypair vkCA to
generate a signature σCA. This signed attestation (example.com,
vkexample.com, σCA) is called a certificate. In practice the structure of certificates

is much more complicated than we are
showing here, and include all sorts of
additional metadata. But the basic idea
is the same as we describe here.

When a client connects to example.com, the server at example.com
will supply the client with the certificate (example.com, vkexample.com,
σCA). As long as this certificate was signed by a CA that the client
trusts (i.e., a CA for which the client has a verification key), the client
can validate the certificate and conclude that the verification key
vkexample.com really belongs to example.com.

In pseudocode the logic for verifying certificates looks like this:

caKeys← {vkVerisign, vkLet’s Encrypt, . . . }.

IsKeyFor((vk, σ), name) :
• For each vkCA in caKeys:

– If Ver(vkCA, (name, vk), σ) = 1: Return true.
• Return false.

A very nice feature of certificate-based public-key infrastructure
is that the client does not need to communicate with the CA to
validate a name-to-key mapping. The client only needs to perform
one signature-verification check. In order to use TLS on a website you

own, you need to convince one of the
certificate authorities to give you a
certificate—i.e., to sign your (name, vk)
pair. To do so, the CA will have some
protocol to follow—typically, you will
send your (name, vk) pair to the CA,
who will then ask you to verify that
you own the name somehow. In the
case of web certificates, the CA may
verify ownership by requiring you to
upload a file file to your server, to add a
new DNS record with a random value,
or something similar. Once the CA is
convinced that you own the domain,
the CA will reply with a certificate: a
signature over the tuple (name, vk). This
(name, vk, σCA).

Certificates in practice works quite well:

• The client only needs to store ≈ 100 CA verification keys, and yet
the client can validate the name-to-key mappings for millions of
websites.

• A client can choose which CAs to trust (though in practice, clients
typically delegate this decision to software vendors).

• The client never needs to interact with the CA.

However, certificates still have some drawbacks:

• If an attacker compromises any CA, they can generate certificates
for any domain.

• Certificate authorities often perform quite minimal validation of
domain ownership.

• If a server’s private key gets stolen, there is no great plan for
revoking or updating a name-to-key mapping.



public-key infrastructure 4

4.1 Revocation

In many cases, a CA will want to delete or change a name-to-key
mapping. This process is called certificate revocation. There are several
possible reasons for this:

• The owner of a verification key may have their corresponding
secret key be lost or stolen.

• A company may want to rotate keys, for example to update to a
new cryptographic algorithm.

• A website may go out of business and another entity buys their
domain name.

• Software bugs may lead a user to generate an insecure keypair that
they later want to revoke.1 1 Scott Yilek et al. “When private keys

are public: Results from the 2008

Debian OpenSSL vulnerability”. In:
SIGCOMM. 2009; Matus Nemec et al.
“The Return of Coppersmith’s Attack:
Practical Factorization of Widely Used
RSA Moduli”. In: CCS. 2017.

In a scheme that uses certificates, this seems like a hard problem:
since there is no interaction with the CA to verify a certificate, there
is no way for a CA to “take back” a certificate. There are again no
excellent solutions to this, but there are a few strategies used in
practice.

Expiration Dates One pragmatic way to handle revocation is to add
an expiration date to each generated certificate—if this expiration
date has passed, the client will reject the certificate. This way, a
server will need to re-authenticate to the CA that they own the name
that they claim to own periodically. So, for example, an attacker
that steals a website’s secret key will only be able to use it until
the certificate expires. In practice, certificates used on the Internet
typically expiration dates between 90 days and 1-2 years.

Software Updates Another solution is for the browser (or client,
more generally) to maintain a list of revoked certificates. On every
connection, the browser will check whether the provided certificate
is in this local revocation list and refuse it if so. Since browsers
today check for updates very frequently, this strategy can respond
to a stolen secret key quickly. However, there is a large storage cost
since now every browser needs to store this (potentially large) list of
revoked certificates.

CA Revocation List To avoid depending on browser manufacturers
to update this revocation list, another strategy is to ask the CA for
it directly. One way to do this is similar to the above: periodically
query the CA to download its updated revocation list and check
that each certificate is not in this list. This method has fallen out of
favor, in part because clients (e.g., behind corporate firewalls) cannot
connect directly to the CAs to download these revocation lists.



public-key infrastructure 5

References

Nemec, Matus et al. “The Return of Coppersmith’s Attack: Practical
Factorization of Widely Used RSA Moduli”. In: CCS. 2017.

Yilek, Scott et al. “When private keys are public: Results from the
2008 Debian OpenSSL vulnerability”. In: SIGCOMM. 2009.


	Public-key infrastructure
	Option 1: Use verification keys as names
	Trust on first use (TOFU)
	Certificates

