Authenticated Encryption
6.1600 Course Staff
Fall 2023

We have just constructed an encryption scheme with weak (CPA) se-
curity: one that provided security given that the adversary could see
encryptions of messages of her choice. The “gold standard” security
notion for encryption schemes allows the attacker to receive both
encryptions of messages of its choice and decryptions of ciphertexts
of its choice. Our security notion then says that even an attacker with
this power should not be able to distinguish which of two chosen
plaintext message a given ciphertexts encrypts. This new and strong
notion of security for encryption schemes is called security against
adaoptive chosen-ciphertext attacks.

Motivation: Chosen-ciphertext security It is not clear why chosen-
ciphertext security is the right security notion to consider. In real-
life applications, why would we ever allow an attacker to obtain
decryptions of ciphertexts of its choosing? It turns out that, in many
settings, attackers can indeed trick honest parties into decrypting
adversarially ciphertexts and revealing their contents.

As a simple example, imagine a server that receives encrypted
requests from the network, decrypts them, and either:

¢ returns an error if the decrypted request is malformed, or
e silently processes the request otherwise.

In this case, an attacker can send ciphertexts to the server and learn
information about their decryptions by noticing whether or not the
server returned an error message.

CPA-secure encryption schemes provide no security guarantees in
this setting. Even if the server leaks a single bit to the attacker about
the decrypted value (such as whether the decrypted ciphertext is a
well-formed request or not), the attacker could potentially learn the
entire secret key!

As a concrete application-level example, consider what could
happen if SSH (the secure shell protocol) used the counter-mode
encryption scheme, as described in the previous lecture, without
any authentication. A user might send the command echo secret >
secret-file to write their secret string, secret, to their own private
file secret-file. The encryption of this command, sent over the
network, would be the XOR of the command and the PRF-generated
pseudorandom bytes. Suppose that the adversary knows the user

Disclaimer: This set of notes is

a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

If the server returns an error when the
decrypted message is illformed, we
often call it a padding oracle. Many many
real-world protocols using non-chosen-
ciphertext-secure encryption schemes
fall victim to this sort of attack.

is running this command, but doesn’t know the contents of the 6-
byte secret string. Consider what happens if the adversary XORs the
encrypted message with the hexadecimal bytes 60 00 00 60 00 00
00 00 0O 00 00 00 00 00 5c 11 Oe 02 4a 04 58 04 05 05 06. The
leading zeroes mean that the first part of the command, echo secret
> , will remain unchanged. When the server decrypts the latter part
of the command (originally secret-file), however, it will obtain
the XOR of secret-file and the bytes that the adversary XOR’ed in,
which happens to turn into the string /tmp/public. As a result, if the
server now runs this command, the user’s secret data will be written
to a file /tmp/public, which might be available to an adversary that
also has an account on that same server and can look at files in /tmp.
Chosen-ciphertext security guarantees that such attacks are ineffec-
tive.

1 Defining Authenticated Encryption

Authenticated-encryption schemes simultaneously provide message
integrity (as a MAC does) and confidentiality (as CPA-secure encryp-
tion does). Additionally, authenticated-encryption schemes remain
secure even when an attacker can see encryptions and decrypts of
ciphertexts of her choice. Perhaps unsurprisingly, the standard way
to construct an authenticated-encryption scheme is to combine a
CPA-secure encryption scheme with a MAC in a careful way.

We now formally define our strong security notion: indistinguisha-
bility under chosen ciphertext attacks, also known as IND-CCA2 security
or CCA security.

Definition 1.1 (CCA security for encryption (strong)). An encryption
scheme is secure against adaptive chosen-ciphertext attacks if every
efficient adversary wins the following game with probability at most

% + “negligible”:

The challenger samples b <% {0,1} and k < K.
The adversary can make either of the following queries to the
challenger repeatedly:

— Chosen-plaintext queries
+ The adversary sends the challenger a message m; € M
+ The challenger replies with c;,; < Enc(k,m;).
— Chosen-ciphertext queries
+ The adversary sends the challenger a ciphertext c; & {cmy,---,Cm; }
* The challenger replies with m1.; < Dec(k, c;).

¢ The adversary then sends two messages (m, m;) € M? to the
challenger, where |m3| = ‘mf |

AUTHENTICATED ENCRYPTION

AUTHENTICATED ENCRYPTION

* The challenger replies with c* < Enc(k, m}).

* The adversary can make more chosen-plaintext queries and more
chosen-ciphertext queries. (The adversary may not make a chosen-
ciphertext query on the challenge ciphertext c*.)

¢ The adversary outputs a value V' € {0,1}.

¢ The adversary wins if b = b'.

1.1 Encrypt then MAC

We typically achieve CCA security using the “encrypt-then-MAC”
construction:

¢ First, encrypt the message using a CPA-secure encryption scheme
on key kgpc.

e Next, MAC the ciphertext using a secure MAC scheme and an

independent key kmac- As we discuss below, it is possible to
derive both keys kgnc and kpac from

e Output the ciphertext and the MAC tag. a single key k using a pseudorandom
function.

The decryption routine first checks the MAC tag, then decrypts the
ciphertext.

Using independent keys (kgnc, kmac) is important in encrypt-then-
MAC, as in many other cryptographic constructions. For example,

a CPA-secure encryption scheme using n-bit keys can reveal the
low order n/2 bits of its secret key in the ciphertext. And a secure
MAC scheme using n-bit keys can reveal the high-order #/2 bits of
its secret key in each MAC tag. Used independently, the encryption
scheme and the MAC scheme are both secure. Used together with
the same key k, the attacker learns all n bits of the key n and can
break both primitives!

So, in general, you should always use independent keys for dif-
ferent primitives. To reduce the amount of keying material parties
need to store, it is actually sufficient to store a single secret key k for
a pseudorandom function F and derive all subsequent keys from the
pseudorandom strings F(k,0), F(k,1),....

Theorem 1.2 (Informal). The Encrypt-then-MAC construction yields a
CCA-secure encryption scheme, provided that: the underlying encryption
scheme is CPA-secure and the underlying MAC scheme is secure (existen-
tially unforgeable against adaptive chosen message attacks).

Reminder: You should never need to
Warning! Only use encrypt-then-MAC There are a number of implement authenticated-encryption
schemes yourself. Instead use an off-
the-shelf implementation that does
authenticated-encryption schemes. MAC-then-encrypt is one way. the hard work for you. AES-GCM is

Encrypt-and-MAC (i.e., MAC the message instead of the ciphertext) one popular and widely implemented
authenticated encryption scheme

bad ways to combine encryption and MACs to attempt to build

is another. Neither of these constructions is necessarily CCA-secure

3

AUTHENTICATED ENCRYPTION 4

when used with a CPA-secure encryption scheme and a secure MAC
scheme. So the only flavor of authenticated encryption you should
use is encrypt-then-MAC.

2 AES-GCM (Galois Counter Mode)

One of the most widely used authenticated-encryption constructions
is AES-GCM. It follows the encrypt-then-MAC paradigm. It uses AES
as a pseudorandom function for counter-mode encryption (??). It
uses a Carter-Wegman-style MAC (??) as the MAC scheme.

There are a few optimizations that AES-GCM uses beyond what
we have described:

¢ AES-GCM derives both the encryption and MAC keys from a
single short key using a pseudorandom function.

e AES-GCM implements a fast form of the Carter-Wegman MAC
that does not need arithmetic modulo a big prime p, as the scheme
described in ?? does. Instead, of defining the MAC using Z,,
(integers mod a 128-bit prime p), GCM works with 128-bit strings.
The GCM mode of operation replaces addition modulo p with
XOR of 128-bit strings and it replaces multiplication modulo

p with a somewhat complicated operation on 128-bit strings. If you are interested, to implement
(Formally, the scheme works over the field [F,1s of order 212.) This the multiplication operation: think of
X both 128-bit strings as polynomials
gives a big performance boost with no loss in security. with 128 coefficients in Z, = {0,1}.

Multiply the polynomials, reducing
the coefficients modulo 2. Then reduce
the resulting polynomial modulo some
fixed polynomial of degree-128. Then
interpret the result as a 128-bit string.

	Defining Authenticated Encryption
	AES-GCM (Galois Counter Mode)

