
Key Exchange and Public-key Encryption
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have talked about encryption systems that require the
sender and recipient to share a secret key. In this chapter, we discuss
how the sender and recipient can agree on a shared secret even if
they only ever communicate over an open (insecure) network.

1 Key exchange

A key-agreement scheme over keyspace K is defined by efficient
functions (Gen,Derive):

• Gen() → (sk, pk). The Gen algorithm generates a secret key and a
public key for one party. Formally, Gen also takes as input the

security parameter.• Derive(skA, pkB) → k. The Derive algorithm takes as input one
party’s secret key skA and the other party’s public key pkB and
outputs a shared key k ∈ K.

Given this syntax, let us see how two parties can use a key-
agreement scheme (Gen,Derive) to agree on a shared secret:

1. Alice runs (skA, pkA)← Gen() and sends pkA to Bob.
2. Bob runs (skB, pkB)← Gen() and sends pkB to Alice.
3. Alice and Bob both then compute a key k ∈ K as:

• Alice computes k← Derive(skA, pkB).

• Bob computes k← Derive(skB, pkA).

Correctness. Correctness for a key-agreement scheme just says that
the two parties should always agree on the same shared secret:

Definition 1.1 (Key Agreement Correctness). We say that a key-
agreement scheme is correct if for all (skA, pkA) ← Gen() and
(skB, pkB)← Gen(), it holds that:

Derive(skA, pkB) = Derive(skB, pkA).

Security. The standard notion of security for a key-agreement
scheme only considers passive attacks: we consider adversaries that
can view the network traffic but cannot modify it. In practice, we
can combine key-agreement schemes with authentication schemes
(e.g., digital signatures) to prevent active attacks by in-network adver-
saries.

key exchange and public-key encryption 2

Our security definition for key agreement says that even if an
adversary sees both parties’ public keys, it should not be able to
distinguish the shared secret from random. That is, the following
probability distributions Dreal and Drandom should be computation-
ally indistinguishable: When we say that two distributions

are computationally indistinguishable,
we mean that if we give the adversary
a sample from one or the other, it
can guess which sample it got with
probability at most 1/2 + “negligible”.

Dreal :=

(pkA, pkB, k) :

(skA, pkA)←R Gen()

(skB, pkB)←R Gen()

k←R Derive(skA, pkB)

Drandom :=

(pkA, pkB, k) :

(_, pkA)←R Gen()

(_, pkB)←R Gen()

k←R K

2 Diffie-Hellman key exchange

We now give a simple and beautiful key-exchange protocol, due to
Diffie and Hellman. So far, we have been able to construct

our cryptographic entities from con-
structs like a PRF, which meant that
we could use “unstructured” algo-
rithms like AES to compute them. We
so far only know how to construct
key-exchange schemes from more struc-
tured problems (e.g., based on number
theory).

The version we will see uses large primes p and q a public parame-
ters, along with a number g ∈ Z∗p, called the “generator.” (Warning:
The parameters p, q, and g must have some particular relation. So
do not attempt to pick these parameters yourself.) Typically, we will
have p ≈ q ≈ 22048.

For a prime p, the notation Z∗p just
denotes the non-zero integers modulo
p. So when we write ab ∈ Z∗p, we mean
a · b mod p.

The keyspace of the Diffie-Hellman scheme is K = Z∗p and the
algorithms are as follows:

• Gen()→ (sk, pk).

– Sample sk←R {1, . . . , q}.
– Set pk← gsk ∈ Z∗p.
– Output (sk, pk).

• Derive(skA, pkB)→ k.

– We have skA ∈ {1, . . . , q} and pkB ∈ Z∗p.
– Output k← (pkB)

skA ∈ Z∗p.

Before we argue correctness and security, let us consider the
computational efficiency of the scheme:

Efficiency. In order for the algorithm to be useful, Alice and Bob
must be able to compute gx ∈ Z∗p efficiently, for x ∈ {1, . . . , q ≈
22048}. However, trying to compute gx where x is 2048 bits long
naively would certainly not be efficient: it would require x ≈ 22048

multiplications! However, we can compute this exponentiation much
more efficiently using the following strategy:

key exchange and public-key encryption 3

• Compute powers of g. Write ℓ ← ⌈log2 p⌉. Then compute
(g, g2, g4, g8, g16, . . . , g2ℓ), where all of these are in Z∗p. It is pos-

sible to compute g2i
with a single multiplication modulo p as

g2i
= (g2(i−1)

)2 ∈ Z∗p. So this step takes only ℓ = 2048 multiplica-
tions. In many applications, the generator

g is fixed in advance. In this case, the
implementation can precompute and
store these powers of g.

• Compute exponentiation. Write the bits of the exponent as x =

x0 · · · xℓ−1. Then compute:

gx = g∑ℓ−1
i=0 xi2i

=
ℓ−1

∏
i=0

xi(g2i
) ∈ Z∗p

This step again takes only ℓ multiplications.

Correctness. Correctness holds since gxy = gyx ∈ Z∗p for all x, y ∈ Z:

Derive(skA, pkB) = (pkB)
skA = (pkA)

skB = Derive(skB, pkA).

Security. To argue security, we must rely on a new computational
assumption: essentially we just assume that the key-agreement
scheme is secure.

Definition 2.1 (Decision Diffie-Hellman (DDH) assumption). The
decision Diffie-Hellman assumption states that, for a suitable choice of
p, q, and g, the following distributions are computationally indistin-
guishable: To make the statement fully formal, we

need to let p, q, and g grow with the
security parameter.Dreal := {(g, gx, gy, gxy) ∈ (Z∗p)

4 : x, y ←R {1, . . . , q}}

Dideal := {(g, gx, gy, gz) ∈ (Z∗p)
4 : x, y, z←R {1, . . . , q}}

In practice, we typically first run Diffie-Hellman key agreement,
have the two parties run the shared secret that they get through a
cryptographic hash function, and then use the hashed value as an
encryption key. If we model the hash function as a random oracle, se-
curity can rely on a slightly weaker assumption—the “computational”
Diffie-Hellman (CDH) assumption. The CDH assumption asserts,
informally, that given (g, gx, gy), it is infeasible to compute gxy. More
formally, we have:

Definition 2.2 (Computational Diffie-Hellman (CDH) assumption).
The computational Diffie-Hellman assumption states that, for a suitable
choice of p, q, and g, and for all adversaries A:

Pr[A(g, gx, gy) = gxy : x, y,←R {1, . . . , q}] ≤ “negligible.”

3 The discrete-log problem

The DDH assumption (Definition 2.1) is no harder than the following
problem, which asserts that computing x given (g, gx) ∈ (Z∗p)

2 is
computationally infeasible:

key exchange and public-key encryption 4

Definition 3.1 (Discrete-log assumption). The discrete-log assumption
states that, for p, q, and g, and for all efficient adversaries A:

Pr[A(g, gx) = x : x ←R {1, . . . , q}] ≤ “negligible”.

Given an algorithm for the discrete-log problem, we can use it
to solve the DDH problem. Given a DDH challenge (g, gx, gy, gz),
compute the discrete log of gx and test whether gz = (gy)x. For
certain choices of p, q, and g, the best known algorithm for the DDH
problem is to first solve the discrete-log problem in Z∗p.

How hard it to solve the discrete-log problem then?

1. The most basic attack is to enumerate all p possible values of x
and check whether the corresponding gx matches. This will take
time p ≈ 22048.

2. There is a slightly more clever algorithm, called “Baby Step Giant
Step,” that is able to compute x in time

√
p.

3. In Z∗p, a much better attack is the Number Field Sieve. This algo-
rithm is able to compute x in (roughly) time exp((log p)1/3(log log p)2/3)—
sub-exponential time! The existence of this attack is the reason we An attack that runs in time

√
p runs in

time 2
1
2 log p. In contrast, the Number

Field Sieve runs in time roughly 2
3
√

log p.
This is much much much faster than
the
√

p-time algorithms, since the
exponent grows much more slowly.

require p to be 2048 bits long to get 128-bit security.

4 Generalizations of Diffie-Hellman

We have described the Diffie-Hellman protocol in terms of Z∗p—
multiplication of integers modulo p. In particular, the protocol uses
a set of elements (here, Z∗p) and a binary operation on elements (here,
multiplication modulo p). There is a natural generalization of the
Diffie-Hellman protocol that works with other sets of elements and
binary operations that operate on them. More precisely, we can define Diffie-

Hellman key exchange with respect
to any finite cyclic group—a concept
from abstract algebra. A cyclic group
just consists of a set of elements and
a binary operation on elements. The set
and operation need to satisfy certain
mathematical properties—associativity,
etc.

Given a group G, we can then define
a discrete-log assumption on G and
whenever discrete-log is hard on G, we
can use G to construct cryptosystems.

The most widely used version of the Diffie-Hellman protocol
today uses elliptic-curve groups. The set of elements in an elliptic-
curve group is a set of points (x, y) ∈ Z2 in two-dimensional space,
where 0 ≤ x, y ≤ p for some prime p ≈ 2256. The binary operation
on elements is some geometric operation on two points that yields
a third point. Even though the underlying objects are now points
instead of integers modulo p, the Diffie-Hellman protocol looks
exactly the same in this setting.

The appeal of elliptic-curve cryptosystems is that the best known
discrete-log algorithm on certain elliptic-curve groups is Baby Step
Giant Step, which runs in

√
p time. So, we can use elliptic-curve

groups of size 2256 and the Diffie-Hellman public keys take only
≈ 256 bits to represent. In contrast, when working in Z∗p, we need
to work modulo a prime p ≈ 22048 to defeat the Number Field Sieve

key exchange and public-key encryption 5

attack, so Diffie-Hellman public keys in this setting take ≈ 2048 bits
to represent.

5 Defining Public-Key Encryption

The definition for a public-key encryption scheme will be similar to
the definitions we saw for symmetric-key encryption:

Definition 5.1 (Public-Key Encryption Scheme). A public-key en-
cryption scheme over message spaceM consists of three efficient
algorithms (Gen,Enc,Dec):
• Gen()→ (sk, pk): Generates a keypair with secret key sk and public

key pk.
• Enc(pk, m) → c: Uses public key pk to encrypts a message m ∈ M

to a ciphertext c.
• Dec(sk, c) → m: Uses secret key sk to decrypt ciphertext c into

message m ∈ M.

Definition 5.2 (Public-Key Encryption - Correctness). For all keypairs
(sk, pk)← Gen() and for all messages m ∈ M, it holds that

Dec(sk,Enc(pk, m)) = m.
The literature sometimes calls security
against chosen-plaintext attacks (“CPA
security”) semantic security.

Definition 5.3 (Public-Key Encryption - Security against chosen-plain-
text attacks (Weak)). A public-key encryption scheme (Gen,Enc,Dec)
is secure against chosen-plaintext attacks if all efficient adversaries A
win the following game with probability ≤ 1

2 + negl:
• The challenger generates (sk, pk) ← Gen() and b ←R {0, 1} and

sends the public key pk to A.
• The adversary A sends m0, m1 ∈ M to the challenger, where
|m0| = |m1|.

• The challenger responds with Enc(pk, mb)

• The adversary outputs b′ and wins if b′ = b.

Note that since this is a public-key encryption scheme, the adver-
sary can use the public key to generate encryptions of any message
of their choice. As in the secret-key setting, here it is crucial that the
encryption algorithm be randomized—otherwise two encryptions
of the same message are identical and the attacker can break CPA
security.

For symmetric-key encryption, we also defined a stronger notion
of security that we called security against chosen-ciphertext attacks
(CCA security). We can extend this definition of CCA security to the
public-key setting.

This security definition asserts that the attacker should not be able
to distinguish the encryption c∗ of two messages of its choice, even if

key exchange and public-key encryption 6

the attacker can obtain decryptions of any ciphertext except c∗. This
is a very strong notion of security (since the security definition gives
the attacker a lot of power) and it is the notion of security that we
typically demand in practice.

Definition 5.4 (Public-Key Encryption - Security against chosen–
ciphertext attacks (Strong)). A public-key encryption scheme
(Gen,Enc,Dec) is secure against chosen-ciphertext attacks if all efficient
adversaries A win the following game with probability ≤ 1

2 + negl:
• The challenger generates (sk, pk) ← Gen() and b ←R {0, 1} and

sends the public key pk to the adversary A.
• The adversary may make polynomially many decryption queries:

– The adversary A sends ciphertext c to the challenger.
– The challenger responds with m← Dec(sk, c)

• At some point, the adversary sends a pair of messages m0, m1 ∈ M
to the challenger, where |m0| = |m1|.

• The challenger returns c∗ ← Enc(pk, mb).
• The adversary can continue to make decryption queries, provided

that it never asks the challenger to decrypt the ciphertext c∗.
• The adversary outputs b′ and wins if b′ = b.

6 ElGamal Encryption Scheme

In public-key encryption, we want a sender to be able to encrypt
a message to a recipient. The goal of public-key encryption is to
perform encryption without a shared secret key.

ElGamal’s encryption scheme essentially uses Diffie-Hellman
key exchange to allow the sender and recipient to agree on a shared
secret key k, and then has the sender encrypt her message with a
symmetric-key cryptosystem under key k. ElGamal’s scheme was not the first

public-key encryption scheme. The
first scheme, RSA, was much more
complicated despite Diffie-Hellman
already having been published.

Definition 6.1 (Hashed ElGamal Encryption). Let p, q, and g be inte-
gers of the sort we use for Diffie-Hellman key exchange (Section 2).
In particular, p ≈ q ≈ 22048 and g ∈ Z∗p. In practice, we typically use elliptic-

curve groups to instantiate ElGamal
encryption, instead of Z∗p. But the
general principle is exactly the same.

Let H : Z∗p → {0, 1}∗ be a hash function (modelled as a random
oracle). Let (Enc′,Dec′) be a symmetric-key authenticated-encryption
scheme. Then define:
• Gen()→ (sk, pk):

– Choose a← {1, . . . , q}.
– Compute A← ga ∈ Z∗p.
– Output (sk, pk)← (a, A).

• Enc(pk, m)→ c:

– Choose r ← {1, . . . , q}.
– Compute R← gr ∈ Z∗p.

key exchange and public-key encryption 7

– Compute k← H(pkr ∈ Z∗p).
– Output c← (R,Enc′(k, m).

• Dec(sk, c)→ m:

– Parse (R, c′)← c.
– Compute k← H(Ra ∈ Z∗p).
– Output m← Dec′(k, c′).

6.1 Performance

The performance of this scheme is limited by the exponentiations—
the symmetric encryption scheme is quite fast (gigabytes per sec-
ond), but a single exponentiation can take a millisecond on modern
processors. For encryption, this scheme requires two exponentia-
tions (gr and pkr). Decryption requires one exponentiation (Rsk). To
speed up the encryption routine, we can precompute powers of g:
g2, g4, g8, g16, . . . , which saves a factor of two in exponentiations. Hashed ElGamal encryption is one of

the most common public-key encryp-
tion schemes used today.

6.2 Security

If we model the hash function H as a random oracle, we can prove
security of ElGamal encryption from (a) the computational Diffie-
Hellman assumption (Definition 2.2) and (b) the CCA security of the
underlying authenticated-encryption scheme (Enc′,Dec′).

	Key exchange
	Diffie-Hellman key exchange
	The discrete-log problem
	Generalizations of Diffie-Hellman
	Defining Public-Key Encryption
	ElGamal Encryption Scheme

