
Encryption in Practice
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have established several constructions that allow us to
hide the contents of transmissions: we created chosen-plaintext- and
chosen-ciphertext-secure encryption schemes that worked with and
without a shared key. We will now discuss a few practical appli-
cations of transport encryption, and why it is often difficult to get
right.

1 File Encryption

Perhaps the most straightforward use of encryption is file encryption.

Example: WhatsApp Encrypted Backup. WhatsApp allows the app’s
users to back up their messages and contacts to the cloud. This way,
a user can recover her messages if she loses or breaks her phone.
To hide the user’s data from WhatsApp’s cloud servers, WhatsApp
uses encrypted backup. To achieve this, the user’s device generates
a 128-bit AES key k at the time of backup and encrypt the message
data (photos, messages, etc.) using AES-GCM(k, ·) before sending the
ciphertext to the server. In order to allow you to restore your backup
on a new phone, the app allows you to export 64 decimal digits that
encode the AES key used. When restoring your backup, you will
enter these digits and your phone will fetch the ciphertext from the
server and use these digits to reconstruct the key and decrypt your
messages. See this document for details on

how WhatsApp encrypts backups.
(The document also describes a more
complicated backup scheme that uses
passwords for encryption.)

This is a fairly simple application of file security. However, file
encryption can be much more tricky: many applications require or
desire features beyond simple encryption and decryption.

1.1 Case Study: PDF v1.5 Encryption

One instance of this desire for extra features that ended up going
wrong was a previous version of the PDF standard, PDF v1.5.1 This 1 Jens Müller et al. “Practical decryption

exfiltration: Breaking pdf encryption”.
In: ACM CCS. 2019.

standard provided several features:
1. It is possible to password-encrypt some or all of the document.

(The encryption scheme does not matter, but think of it as a
secure authenticated-encryption scheme.) For example, a PDF
could have an unencrypted title page and have the rest of the
pages be encrypted.

https://scontent.fphl1-1.fna.fbcdn.net/v/t39.8562-6/241394876_546674233234181_8907137889500301879_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=ANW9FNYPigIAX93N8Oj&_nc_ht=scontent.fphl1-1.fna&oh=00_AT9IVosU4uWqddd5woEO4eUWw3mbd76IgvwjcqDApb3p9A&oe=63565D66


encryption in practice 2

2. A PDF document can contain a form that the PDF reader
submits to a server via HTTP.

3. A form in a PDF document can reference other parts of a
document.

4. The PDF reader may submit a form when an event happens:
when the PDF is opened, closed, decrypted, etc.
Each of these features individually seems innocuous. However,

when combined, there is a clever attack that allows an attacker to
learn the contents of the encrypted portion of a PDF.

The attack works against a PDF document with an unecrypted
(public) title page and an encrypted (secret) body. We assume that the
attacker can modify the PDF file on its way to the victim.

To mount the attacker, the attacker intercepts the PDF on the way
to the victim and replaces the title page with an “evil” title page. The
evil title page:

• contains an invisible PDF form,
• reads the contents of the decrypted pages into a PDF form ele-

ment, on the event that decryption of the PDF body succeeds, and
then

• submits the form via HTTP to evil.com

So when the victim recipient enters her password into the PDF
reader to decrypt the document, the evil title page is exfiltrates the
decrypted content to evil.com via a PDF form.

What went wrong? The core issue here was that the unencrypted
contents of the document were not authenticated. That is, an attacker
could modify the unencrypted pages of the document without detec-
tion. A better design would have been to either use a MAC over all
pages of the document or to use a primitive called “Authenticated
Encryption with Associated Data” to authenticate the encrypted data
together with the unencrypted data.

One downside of MACing the entire document is that, before
rendering even a single page of the PDF, the reader would have to
compute a MAC over the entire PDF. If the PDF consists of many
thousands of pages, this could be expensive. Using a more sophis-
ticated cryptographic construction: per-page MACs, plus MACs on
the document metadata, etc., we might be able to construct a scheme
that protects document integrity while allowing partial document
rendering. But the design of such a scheme would have to carefully
defend document integrity against the sort of attacks we describe
here.



encryption in practice 3

2 Stream Encryption: Transport Layer Security (TLS)

The standard Internet data transfer protocols—TCP and UDP—
provide no integrity or confidentiality whatsoever. To protect the
data that we send over the network, we use the transport-layer security
(TLS) protocol. The TLS protocol runs on top of TCP and aims to
provide an encrypted “tunnel” between a client and server. HTTPS is simply HTTP run over TLS.

While designing a stream-encryption protocol may seem straight-
forward at first glance, the task is much more subtle than it would
seem. However, as is often the case in security, features and practical
requirements make the situation much more complex.

2.1 Downgrade Attack

We now give one example of a downgrade attack—the sort of subtle
security issue that can arise in protocol design.

The current version of TLS is TLS 1.3. An older version of the TLS
standard, called SSLv3, is vulnerable to devastating attacks that allow
an attacker to recover the plaintext traffic. However, for backwards
compatibility, many TLS clients and servers still supported SSLv3

until quite recently.
When a TLS client connects to a TLS server, the two parties first ex-

change some messages to decide which version of the TLS protocol to
use. In particular, the client will try to connect to the server using the
latest version of TLS it supports. The server will respond back with
either a confirmation (if the server supports the client’s proposed
TLS version) or with garbage (if not). If garbage, the client will try to
connect to the server with an older version of TLS.

An important point is that none of these negotiation messages are
authenticated—the client and server cannot start using authentication
(MACs, signatures, etc.) until they agree on which version of TLS
to use! So, an active in-network attacker can simply replace all of
the server responses in this protocol-negotiation phase with garbage
until the client downgrades all the way to SSLv3. Once the client and
server agree to use SSLv3, believing that this is their best available
option, the attacker can then monitor and decrypt their traffic using
known attacks on SSLv3.

The best defense against this attack is for both parties to disable
support for SSLv3 completely.

2.2 TLS Structure

TLS consists of two main phases:
1. Handshake: In this phase, the client and server use a key-

exchange protocol to agree on a shared key to use to encrypt



encryption in practice 4

their application-layer traffic. This step uses public-key cryp-
tography, since the client and server initially have no shared
secret.

2. Record protocol: This phase is where the actual application-
layer communication happens. This phases uses the secret key
that the client and server agreed upon in the handshake phase
for authentication and encryption.

2.3 TLS Handshake Properties

In our definitions of public-key encryption, we had only two (rela-
tively simple) properties: correctness and security. The TLS hand-
shake, however, has a much more complicated set of goals:
• Correctness: Both parties agree on the same session key at the

conclusion of the handshake.
• Security: adversary “learns nothing” about the secret key that the

parties agree upon at the conclusion of the handshake.
• Peer authentication: At the end of the handshake, each party

believes that they are talking to the other party.
• Downgrade protection: The parties agree on the same version of

TLS that they would agree on absent an in-network attacker.
• Forward secrecy with respect to key compromise: if an attacker

steals the secrets stored on the client or the server, the attacker
cannot decrypt past traffic. To provide forward secrecy, modern

cryptographic protocols use long-term
secrets only for signing—not for en-
cryption. These protocols use ephemeral
(one-time-use) cryptographic keys for
key exchange and encryption. Protocol
participants delete these ephemeral
keys on connection teardown and/or
they rotate these keys often.

This way, if an attacker compromises
a party’s secret key, the attacker can
only sign messages on behalf of that
party; the attacker cannot use the secret
to decrypt past messages.

• Protection against key-compromise impersonation: If an attacker
steals a client’s secret key, the attacker should not be able to imper-
sonate other servers to the client.

• Protection of endpoint identities: The public keys of the two
parties should never flow over the wire in the clear. For example, if
a client is connecting to a website that uses a content-distribution
network, such as Akamai or Cloudflare, an attacker should not be
able to tell which website the client is connecting to—only that it is
hosted on Akamai or Cloudflare.

2.4 TLS Handshake

The TLS handshake is very carefully designed to achieve these prop-
erties. A grossly simplified version looks something like the follow-
ing:
1. At the start of the handshake, the TLS client holds the public

pkCA of a certificate authority. The TLS server (for example,
MIT) holds its secret signing key skMIT and a public-key
certificate certMIT binding its public key pkMIT to its domain
mit.edu.



encryption in practice 5

2. Client Hello: The client sends the following values to the
server:
• a random nonce,
• list of supported ciphersuites, and A ciphersuite contains all of the crypto-

graphic parameters needed to perform
key exchange, hashing, authentica-
tion, and encryption. For example,
one possible ciphersuite for TLS 1.2 is
ECDHE-RSA-AES256-GCM-SHA384. This
indicates use of ephemeral elliptic-curve
Diffie-Hellman key exchange (DHE)
with RSA signatures (RSA), 256-bit AES
encryption in GCM mode (AES256-GCM),
and SHA2-384 as the hash function
(SHA384).

• an ephemeral Diffie-Hellman public key. (The client con-
structs this Diffie-Hellman public key using its preferred
ciphersuite. If the server does not support the ciphersuite
the client picked, the client will have to re-run this step
using a different ciphersuite.)

3. Server Hello: The server sends several values to the client,
choosing a ciphersuite to use and completing the Diffie-
Hellman key exchange. That is, the server sends:
• a random nonce,
• a ciphersuite to use,
• and an ephemeral Diffie-Hellman public key

4. Both partices compute a shared session key k using Diffie-
Hellman key agreement on the ephemeral keys they ex-
changed.

5. Under encryption using the keys derived from the session
key k, the server sends the certificate for mit.edu as well as
a signature over all messages sent so far, using its long-term
secret key skMIT. The client then checks that:
• the certificate has been signed by one of the client’s trusted

CAs, and
• the signature from the server matches their own record of

the messages.
6. Finally, the client and server run the TLS Record Protocol to

exchange encrypted and authenticated application data.
This simplified toy version of the TLS handshake does not provide

many of the features that the real TLS handshake provides. But it
should give you a flavor of what the real handshake looks like.

3 Properties that TLS does not provide

Authenticated End-of-File TLS does not provide any end-of-file
authentication, or “clean closure.” To explain what this means by
example:

A popular tool to install the toolchain for the trendy systems
programming language Rust is rustup. To use the tool and install
the Rust toolchain, the recommanded method is to run the command
“curl https://sh.rustup.rs | sh.” This downloads a shell script
from the internet over HTTPS and immediately runs it using the shell
sh.

Imagine that the contents of the downloaded script create a tem-



encryption in practice 6

porary directory, copy things into it, install some things, and fi-
nally delete the temporary directory with something like rm -r

/tmp/install. An in-network attacker, who knows the structure of
the rustup install script, could drop all of the packets in the stream
immediately after the characters rm -r /. Eventually, the TLS connec-
tion will timeout, an shell will run the command rm -r /, deleting
the user’s entire file system.

To protect against this, script writers try to design their scripts
such that if the stream is cut off in the middle of a download, nothing
happens. For example, the install script might consist of a single
function definition that is called at the very end of the function.

Plaintext Length Obfuscation As we have discussed, encryption
reveals exactly the length of the plaintext. If there is data that is not
encrypted that is then included inside the encrypted data as well, this
can cause a vulnerability—see the CRIME attack.

References

Müller, Jens et al. “Practical decryption exfiltration: Breaking pdf
encryption”. In: ACM CCS. 2019.


	File Encryption
	Stream Encryption: Transport Layer Security (TLS)
	Properties that TLS does not provide

