
Open Questions in Encryption
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have established what may seem like a comprehensive
set of tools to transmit data over the network: we have schemes
for verifying the integrity of data and for hiding the contents of a
transmission from an adversary, both with and without a shared key.

Transport-layer security (TLS) effectively builds and “encrypted
pipe” between a client and a server. Through the encrypted pipe that
TLS provides, we can run any of our favorite TCP-based protocols—
HTTP, SMTP, POP, IMAP, etc.—and can thus hide our data from
an in-network attacker. And yet, the security guarantees that TLS
provides fall short of the strongest possible security notions we could
desire.

If we were to imagine the best possible security we could ask for
regarding network traffic, it might look (imprecisely) something like
the following:

An attacker who controls many parties (clients and servers) as well as
the network should “learn nothing” about who the client is talking to
and what she is saying.

Unfortunately, the protocols we have for secure communication
today fall far short of this goal. In this section, we describe some
of the shortcomings of today’s transport-security tools and some
imperfect solutions.

1 Problem: Encryption does not hide
the source and destination of a packet

In order to send IP packets over the internet, the Internet’s routing
system relies on routers in the network knowing the source and desti-
nation IP addresses of each packet: these are included, unencrypted,
in the packet header. (In some ways, the “pipe” analogy fits here:
anyone can see where the pipe starts and where it ends.)

Solution Attempt: Tor The Tor system aims to allow a client to con-
nect to a server over the Internet while hiding—from certain types of
adversaries—which server the client is connecting to. For example, a
Tor client should be able to browse the web without anyone learning
which websites the client is visiting.



open questions in encryption 2

Tor’s strategy is to bounce traffic around the Internet and hope
that no real-world attacker can gather enough information to figure
out which client is communicate with which server. Tor provides no
precise security guarantees, and there are scores of research papers
demonstrating various weaknesses in Tor’s security plan. At the
same time, Tor is publicly available, is well supported, is widely used,
and seems to provide some meaningful privacy benefits in practice. It is difficult to evaluate the security

of a tool like Tor, since real-world
attackers will not necessarily reveal
that they can break the tool’s security
guarantees. So using a tool like Tor
requires taking a leap of faith.

Tor works by nesting several of these encrypted pipes: when
opening a connection, the Tor client will first select three relays from
the Tor network (A, B, C). The Tor client will then:

1. Open an encrypted tunnel to the first relay A (the “guard”).

2. Through that tunnel, open an encrypted tunnel to the second
relay B.

3. Through that tunnel-inside-a-tunnel, open an encrypted tunnel to
the third relay C (the “exit”).

The client will then send its application-layer traffic through this
tunnel-inside-a-tunnel-inside-a-tunnel. So each byte of application
data will be encrypted first for relay C, then for relay B, then for
relay A. When the client sends this ciphertext over the circuit from
relay A to B to C to the real destination, relay A will first strip off its
layer of encryption then forward the inner packet to relay B. Relay B
will do the same, stripping off a layer of encryption and forwarding
the packet to relay C. Finally, relay C will strip off the last layer of
encryption and be left with a normal IP packet that it can then send
to the destination server. As the response makes it back through the
network, each relay node will add a layer of encryption. The end
result of this is that no single relay can see the source and destination
IP addresses.

However, the security that Tor provides is imperfect. First, if an
attacker controls the guard node (relay A) and the exit node (relay
C), the attacker can correlate the timing of when a packet enters the
guard node and when a packet exits the exit node. Using this timing
an attacker can make a guess at the route traffic is taking through
the Tor network. Even without controlling relay nodes, if an attacker
controls certain key points in the Internet (e.g., Internet exchange
points or undersea fiber links) it may be able to perform this sort of
traffic analysis even without controlling relays.

2 Problem: Attacker sees packet sizes and timings

As we discussed, practical encryption schemes necessarily reveal the
length of the ciphertext. In the context of the Internet, this means that



open questions in encryption 3

an attacker can learn the size of each TCP packet that a client sends,
along with timing information. (Here the “encrypted pipe” analogy
for TLS breaks down: an attacker can see how much traffic flows
through the encrypted pipe and when.)

Even without seeing the destination and source of packets sent
to and from a client’s machine, an attacker can learn significant
amounts about the client’s traffic. Some examples are:

• Watching a movie: Video traffic has a distinct traffic pattern. By
monitoring, for example, the length of time that a client spends
watching a movie, a network attacker learn with fairly high accu-
racy which movie the client is watching.

• Using ssh: Different commands will have different traffic patterns.
An attacker may be able to infer what type of commands a client is
running by inspecting traffic patterns.

• Downloading a file: The bitlength of a downloaded file can uniquely
identify the file in many cases.

• Browsing the web: sizes leak individual pages.

Example: New York Times The New York Times homepage nytimes.com/

downloads 1.56 MB of content, along with 76 total assets (images,
CSS, JavaScript). The webpage to submit a sensitive tip, nytimes.com/tips,
downloads 41.92 KB and only 15 assets. By counting the number of
HTTPS requests that a client makes over an encrypted connection
to nytimes.com, an attacker can easily distinguish whether a client
is visiting the homepage or the tips page, even if the attacker cannot
decrypt even a single bit of the HTTPS traffic itself.

Attempts at a solution There are several common ways that people
attempt to protect against this sort of traffic analysis. None of these
solutions works well.

1. Random Noise: To try to hide the length of the packets it sends, a
client can add a randomly chosen number of bytes of dummy data
to the end of each packet. The hope is that by randomizing packet
lengths, the client prevents the attacker from performing the traffic
analysis.

Unfortunately, a patient attacker can use averaging to effectively
eliminate the effect of the random noise. That is, if the attacker can
trick the client into sending the same message a few times (as is
often possible), the attacker can average the noised packet lengths
to get a good estimate of the true length.



open questions in encryption 4

2. Padding: Another option is to just pad every packet (or webpage
or encrypted message, etc.) to match the largest packet that the
client will ever send. For example, whenever the client visits a
page on nytimes.com, the client could download 50MB of page
content and 100 fixed-size assets, even if the true page is tiny.
This is somewhat secure, but incredibly costly and therefore not
practical outside of very specific circumstances.

3 A Promising Direction: Metadata Privacy for Messaging

Messaging apps like WhatsApp and iMessage are end-to-end en-
crypted, but still may leak who you are talking to. This problem is
more tractable due to the circumstances of messaging:

• Messages are approximately fixed length.

• Some latency is OK.

• Total daily traffic per user is small.

• Each user talks to few messaging partners.

Because of these constraints, it may be feasible to use techniques
like padding to greatly reduce the amount of data that messaging
metadata reveals and to do so in a way that provides strong formal
guarantees about security. But still, no widely used messaging app
provides any sort of metadata-privacy guarantees.

4 Problem: Endpoint Compromise

Say that we have a perfect scheme for transport security—one that
hides all data and metadata. Such a scheme is still not enough to
protect our data if an adversary can compromise the communication
endpoints.

For example, in many applications, a client sends some sensitive
data to a server (e.g., its Google search queries). The server is free to
lose it in a breach, sell it, or turn it over to law enforcement agencies,
etc. Later on, we will discuss how to protect against server compro-
mise using software-engineering techniques. Here, we will give one
example of how cryptography can protect user data even against a
compromised server.

4.1 Private Information Retrieval

In many applications, a client must read a record from a database
stored at a server. The client might like to perform such a database
query without the server learning which record it accessed. A concrete application of this is Google

search—in order to give you search
results, Google necessarily learns what
you are searching. With a PIR scheme,
it would be possible for Google to look
up search results without learning what
you are searching for!



open questions in encryption 5

In a private information retrieval scheme:

• the server holds a public database of n bits: x1, x2, . . . , xn ∈ {0, 1},
and

• the client holds a secret index i ∈ {1, . . . , n}.

The client and server interact. At the end of the interaction we want
the following properties to hold:

• Correctness: The client outputs xi ∈ {0, 1}.
• Security: The server “learns nothing” about the client’s secret index

i. In particular, we demand that the message that the client sends
to the server is a CPA-secure encryption of its index i.

Naïve private information retrieval. The simple scheme for private in-
formation retrieval is to have the server send all n bits of the database
to the client. When the database is large, as it is for Google search,
this would be an infeasible amount of communication. A surprising
fact is that there are simple private-information-retrieval protocols
that involve much less than n bits of client-server communication.

4.2 A non-trivial private-information-retrieval scheme.

To achieve this, we need a new tool called additively homomorphic
encryption.

Additively homomorphic encryption A secret-key additively homo-
morphic encryption scheme is a CPA-secure secret-key encryption
scheme (Enc,Dec) over key space K and message space in M = Zp

with the added property that for all keys k ∈ K and all messages
m, m̂ ∈ M,

Enc(k, m) ⋆ Enc(k, m̂) = Enc(k, m + m̂),

where “⋆” is some fixed binary operation on ciphertexts.
In English: given two encrypted messages m and m̂, encrypted

under an additively homomorphic encryption scheme, anyone can
compute the encryption of m + m̂. Being able to add encrypted
messages also allows multiplying encrypted messages by public
constants, since m + m = 2m and 2m + 2m = 4m and so on. Once we
can add and multiply by constants, and we can compute a matrix-
vector product of an encrypted vector and a public matrix.

It is possible to construct an additively homomorphic encryption
scheme from the DDH assumption, with only a slight tweak to
ElGamal encryption.



open questions in encryption 6

PIR Construction We can use additively homomorphic encryption to
construct a private-information-retrieval scheme. To do so, the server
represents its its database (the xi values) as a

√
n ×

√
n matrix D. The

client then tells the server which column j it would like by supply-
ing the encryption of a

√
n × 1 vector m with a 1 in the jth location.

The client sends this encryption (using a key only the client knows)
as Enc(k, m). The server computes the matrix product Enc(k, Dm),
which gives the jth column of the matrix, using additively homo-
morphic encryption and returns the response to the client, where the
client can find the bit they are interested in in the column.

This allows a client to retrieve a bit from a server’s database
without the server learning anything about the desired bit, and to
do so at the communication cost of only 2

√
n ciphertext. The server

computation cost is high—the server necessarily touches every bit
of the database—but at least it shows that making private queries is
feasible in theory.


	Problem: Encryption does not hidethe source and destination of a packet
	Problem: Attacker sees packet sizes and timings
	A Promising Direction: Metadata Privacy for Messaging
	Problem: Endpoint Compromise

