
Architecting a secure system
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have been focusing on security for network communica-
tion. We have established many tools to achieve this, from message
authentication codes to public-key encryption.

Ultimately, however, applications need to make use of these tools.
And for our network security tools to provide meaningful security,
the applications themselves must be reasonably secure.

In discussing platform and application security, there are two
classes of problem that we want to defend against.

1. Mistakes of various types.

• Buggy systems: including hardware and software bugs

• User mistakes: phishing, misconfiguration

2. Malicious people or components.

• Malicious components: malware, supply-chain attacks

• Malicious users: what if the adversary gets the admin’s password?

• Attacker gets access to the system: insider attacks, the adversary
guesses credentials,

In computer security, we tend to treat mistakes/bugs and mali-
cious software/components in the same way. We do that because
(1) it’s often difficult to specify what it means for a component to be
“non-maliciously buggy” and (2) an attacker can often leverage what
seems like a benign bug into full-fledged misbehavior.

Thus, a theme that will be present throughout this section is
that we will consider mistakes to be malicious: if we are prepared
to handle malicious components, we will similarly be prepared to
handle our own buggy code. If we are prepared to limit damage of a
malicious user with the admin password, we will also be limiting the
damage that a mistake-making admin can cause.

This multitude of threats makes designing secure applications
quite difficult. To make progress, we will seek to design systems that
limit damage when things go wrong.

When we design for security, we have essentially three goals:

1. Defend against known attacks.

2. Defend against unknown attacks.



architecting a secure system 2

3. Limiting damage. In the cryptography part of this course, systems
are either security or insecure. In systems security, things are
much more gray. Attacks we care about often are outside of our
threat model—even when this happens, we’d like to somehow
contain the damage.

1 Isolation

One of the most effective strategies to limit damage is to split a sys-
tem into isolated components. If one of these components becomes
compromised, it should not be able to compromise the other compo-
nents. For example, if you run code in one virtual machine, it should
not be able to tamper with data in another virtual machine. When choosing what mechanism to use

to isolate various components, we think
a lot about the performance overhead of
an isolation mechanism. The challenge
of building a good isolation mechanism
is ensuring strong isolation without
slowing down the isolation components
too much (or taking up too much extra
memory).

These components will typically run on top of some host that
enforces isolation. Importantly, this host must be correct! If there
are bugs in the host, malicious code in a component may be able
to exploit a bug to escape its isolation. The success of an isolation
mechanism depends on the correctness and configuration of the host.

Examples Host
Docker Container Operation System (e.g. Linux)

Browser tabs Browser
Language-Level (JavaScript, Wasm) Language Runtime

Process Linux kernel
Virtual machines (VMs) VM Monitor

Physical (“air gap”) Physics

Table 1: Some common types of
isolation

In order for these isolated components to be useful, they will need
to be able to talk to each other in some form. For example, a client
component must be able to make requests to a database component,
but we would like to limit the power of the client to do damage. For
this, we would like to achieve controlled sharing.

1.1 Controlled Sharing

For an isolation mechanism to be useful, it additionally needs to have
some way to interact with other isolated components. For example,
some JavaScript code isolated in a browser tab still needs some
means by which to make requests over the network.

When a host decide whether to allow a request from a particular
component, it typically needs to do three things with each request: Since all three of these actions start with

the letters “Au,” we sometimes call this
the gold standard for controlled sharing.• Authenticate: Associate the request with some principal. A prin-

cipal could be a user name, an “origin” in the web context (e.g.,
google.com), a program, or some other entity in the system.



architecting a secure system 3

• Authorize: Decide whether that principal is allowed to make the
request.

• Audit: Keep track of requests that each principal makes. Auditing
is about limiting damage: often a host will mistakenly allow
requests it shouldn’t; audit logs make it easier to discover such
mistakes and to clean up afterwards.

It is crucial that an isolation mechanism perform these three
checks on every single request—a single hold in the isolation bound-
ary is often enough to completely break any benefits isolation that
would have provided.

2 Authentication

Since we already had an entire module on authentication using
signatures, MACs, passwords, and so on, we will not discuss authen-
tication further here.

3 Authorization Policies

In order to authorize requests, we need some sense of permissions—a
mapping from objects to principals that can access them. We call these
permissions the authorization policy.

Storing policies. We can think of an authorization policy as a gigantic
matrix with one row per object and one column per principal. For
example, in a file system, we could have one row per file, and one
column per user in the system. The entry in column i and row j lists
the actions that user i can perform on file j: read, write, execute, etc.
A common way of storing this gigantic matrix, for example in AFS, is
via an access control list for each object.

Setting policies. There are many approaches to setting authorization
policies. As always in computer systems, there is no one perfect
solution:

• Discretionary access control: “Owner” of each object sets the
policy. This approach is useful in file systems—each file has an
owner and the owner can determine who has access to the file. A
problem is that if an attacker hijacks the owner’s account (or just
one application that the owner runs), the attacker can tamper with
the policy for all of the user’s files. In addition, it may be difficult
for non-expert users to set policies.



architecting a secure system 4

• Mandatory access control: Administrator sets policy. This ap-
proach often is useful in a large organization, when administrators
have opinions about which user should have access to which files
or systems. A classic example of this is for systems that handle
classified data in government systems. Normal users of the system
cannot give unprivileged users access to a classified files.

One limitation of this approach is that it is very coarse grained:
administrators may not know exactly who should have access to
what.

Systems in practice often use some combination of both of these
strategies. Role-based access control tries to hit some

midpoint between discretionary and
mandatory access control. In these
systems, there is a centrally defined set
of “roles.” In a university, these could
be “Students,” “Faculty,” and “Staff.”
The security administrator assigns users
to roles. Then application developers
determine which roles have access to
the application.

Common issues are:

• It is difficult to keep policies up to date as the set of users evolves.
Expiring permissions is one strategy.

• Users will complain if they do not have enough permissions, but
they will never complain if they have too many permissions. As a
result, users often end up with more access than they need from a
security standpoint.

4 Auditing

We have relatively little to say about this. The most important thing
to remember about auditing is that a system should store the audit
logs in a container that is separate from the container holding appli-
cation logic. That is important because if the attacker compromises
the application, it should be difficult for the attacker to compromise
the logs as well.

5 Delegation and Chained Requests

Users often interact with systems indirectly. For example, when
accessing Gmail, a user’s browser first sends a request to the Gmail
server asking for new messages. The Gmail server then sends a
request to the database to fetch the message data.

For the first request, it is fairly clear that the principal should
be Alice: the request is coming from Alice’s browser, and therefore
should have been initiated by Alice directly. Alice will send some
credential to the server, and the server can use this credential to
verify that it is really Alice on the other end. For the second request,
however, it is not as clear who the request should be from.

One option is to have the request come from Alice. This protects
against compromise of the Gmail server—the adversary cannot see



architecting a secure system 5

all user data. Systems like SSH and AFS follow a strategy like this.
Another option is for the principal of this second request to be the
Gmail server itself. This helps with isolation among services access
the same database: if the Google calendar code is buggy and gets
compromised, the first plan would allow an adversary to view Alice’s
gmail data even is the gmail service was perfectly secure. However, it
does not protect other users from a buggy Gmail service.

Compound Principal: “B for A.” To achieve something stronger,
we can create a new type of compound principal that combines a
service or device with a user. For example, this server-to-database
request could carry a principal of “Gmail Server for Alice”. This
provides protection against both gmail server compromise and
against compromise of other services.

However, it is not as clear how to actually implement this. One
option is to continue to have Alice send her credential to the server
directly. However, then the server can totally impersonate Alice and
we gain little protection. What we would really like is for Alice to
give permission to the Gmail server to fetch her emails, but not to do
anything else. This is called delegation.

Delegation with cryptography. In interacting with the Gmail server B,
we may like for Alice (A) to give B permission to authenticate as “B
for A” and to do so for only 60 seconds into the future. To achieve
this, A can sign a message that outlines the permission it would like
to give to B. This signature becomes the proof of authorization. As an
example:

Sign(sk− A, “A delegates to B”, start = now, end = now + 60)

Google indeed uses a strategy like this. They have a global DoS-
resilient HTTP front-end that performs initial authentication. This
frontend is then responsible for generating these scoped delegation
signatures for each operation that the user would like to do and
sending them along to the individual services. These signatures are
then used for all following operations.

Capabilities. We may want more fine-grained access control. For
example, on Android, the Gmail app may like to delegate permission
to a PDF viewer to view an attachment. However, if all the attach-
ments are stored in some common database, we would like to avoid
giving the PDF viewer access to view everything in the database. To
achieve this, Android (and systems more generally) use a plan called
cababilities.



architecting a secure system 6

A similar strategy can be seen, for example, in cloud file sharing:
when you share a file in google drive, it generates a long random link
that allows anyone with access to that link to view that file (and no
others). This link itself becomes a capability—it allows anyone that
posesses it to perform some related action.


	Isolation
	Authentication
	Authorization Policies
	Auditing
	Delegation and Chained Requests

