
Isolation
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

In many settings when building systems, it is useful to isolate differ-
ent components of a computer system. For example, cloud providers
such as Amazon Web Services’ EC2 run multiple virtual machines,
your phone runs several apps, and your browser runs many sites
together. If one of these virtual machines (or apps or websites) is
malicious or buggy, these platforms would like to protect the buggy
component from interfering with the execution of other code in the
system. We often refer to separate isolated components as running in
separate isolation domains.

Ideally, we could have each isolation domain run on separate
physical computer. If this were the case, (modulo physical side-
channel attacks) one domain would clearly not be able to touch
another’s state. Unfortunately, the cost of this physical “air gap”
isolation is far too high for most practical applications. Computer systems for high-stakes

applications (e.g., classified government
data) do in fact use this type of “air
gap” isolation.

So, when creating isolation methods, we aim to make it appear as
if each domain is running on a separate computer but to do so all on
the same computer.

1 Defining Isolation

In order to define isolation, we will think about two key properties:
integrity and confidentiality.

1.1 (Weak) Integrity

One property that we would like an isolation scheme to provide is
integrity: one domain cannot modifying the state of another domain.
To formalize this, let’s consider two domains running on a single
host, an adversary domain A and a victim domain V. We would like
to guarantee that A cannot change the execution of V. We can define
something in terms of the state of each domain, SA and SV . For any
pair of starting states (SA, SV), after running A, we would like the
new pair of states to be (S′

A, SV):

(SA, SV)
runA−−−→ (S′

A, SV)

1.2 (Weak) Confidentiality

We would also like confidentiality: an adversarial domain should not
be able to read a data from any other domain. We can formalize this

isolation 2

by considering two worlds, each with a different victim state. After
running A in each of these worlds, we would like the resulting S′

A
to be identical. That is, for all pairs of victim states S1

V , S2
V , running

(SA, S1
V) results in the same adversarial state as running (SA, S2

V):

(SA, S1
V)

runA−−−→ (S′
A,−)

(SA, S2
V)

runA−−−→ (S′
A,−)

This definition of confidentiality is often called “non-leakage”.

1.3 Non-interference: Strong confidentiality and integrity

In our definitions of confidentiality and integrity so far, only the
adversary domain runs. In a real system, both the adversary and
the victim domain will run concurrently. Ideally, we would like to
ensure that our confidentiality and integrity properties hold under
interleaved execution of the adversary and victim.

To achieve this stronger notion of security, we can include an inter-
leaving of A and V in one world—we would like for the resulting S′

A
to be identical whether or not V runs.

(SA, SV)
run A,V−−−−−−→

A,V,V,A,A
(S′

A,−)

(SA, SV)
run only A−−−−−−→
A,A,...,A

(S′
A,−)

This definition is often called non-interference. We can similarly
strengthen our definition of integrity by requiring that S′

V is identical
after running V whether or not A is run.

(SA, SV)
run A,V−−−−−−→

A,V,V,A,A
(−, S′

V)

(SA, SV)
run only V−−−−−−→
A,A,...,A

(−, S′
V)

1.4 Non-interference is difficult to achieve

To achieve a non-interference style of isolation, an adversarial process
A must not be able to determine whether there is a victim V process
running alongside it concurrently. The challenge, though, is that
whenever the adversary and victim share limited resources—such as
CPU, RAM, network bandwidth, hard disk space, etc.—it is almost
always possible for the adversary to determine whether there is a
victim process running concurrently. The information leakage across isolation

boundaries as a results of resource
contention is one type of side channel
or covert channel. There is a vast liter-
ature on how to construct and exploit
various types of side channels that
leak information from a victim to an
adversary.

isolation 3

Example: Memory Allocation. A real system will have some bound on
the amount of memory available to it. After this memory is used, the
system will be unable to allocate any additional memory. Consider
a system with 16GB of memory and a victim process that allocates
memory based on the value of some secret:

int secret;

malloc(secret);

An adversary could repeatedly try to allocate memory until the
system tells them they cannot. By keeping track of the amount of
memory they were able to allocate, the adversary can learn the secret:
if the adversary is able to allocate 15GB, the adversary will know that
the secret is 227, as the victim must have allocated 1GB.

Example: Execution Time. Consider another victim that runs some
computation that takes a variable amount of time to finish depending
on the value of a secret. By keeping track of how long the adversary
takes to finish, the adversary can learn how much execution time
the victim running on the same system takes to finish. Using this
information, the adversary may be able to learn information about
the secret. This type of information transfer are often called “timing
channels”, and can be quite tricky to work with.

There are effectively three ways to deal with the fact that non-
interference is generally impossible to achieve with shared limited
resources:

• Strictly partition resources to prevent contention. Each isolation
domain could run on a separate physical machine, or we can
provision the resources on a machine are partitioned in such a
way that there is never contention for resources between isolation
domains.

• Prevent isolation domains from detecting resource contention.
Another (more practical) approach is to restrict the types of pro-
grams that can runs in such a way that prevents the programs
in the system from detecting contention in shared resources. For
example, if all programs in an isolated system are deterministic
functions with no access to the outside world—no system calls, no
networking, etc.—then programs may not be able to detect resource
contention when it exists. In most implementations of isolation
(e.g., virtual machines in a cloud environment), isolation domains
absolutely need access to the outside world, so this approach is
rarely useful.

• Give up on non-interference. Most isolation mechanisms opt for
this solution. Rather than trying to achieve strict non-interference,

isolation 4

we aim for some “good enough” notion of isolation. Linux, for ex-
ample, does not attempt to achieve strict non-interference between
processes running on the same physical machine.

2 Implementing Isolation

In principle, implementing isolation in a system involves three main
steps:

1. identify the state for each domain,

2. identify operations that access state, and

3. ensure that state-modifying operations can only read/write the
state within an isolation domain.

The challenge is performance. An isolation mechanism will have
to perform checks to ensure that components in one isolate cannot
influence another. The game in isolation is to provide strong isolation
at the minimum possible cost.

We will start by considering simpler isolation mechanisms and
then look at more sophisticated ones.

2.1 Emulation

One simple way to implement isolation is to have an interpreter that
executes isolated programs (e.g., x86 programs). The interpreter
inspects each opcode in the program one at a time, and then imple-
ments the operations on the isolated state that the opcode indicates.
While processing each opcode, the interpreter enforces checks on the
isolated program to ensure that it can only modify its local state.

Some JavaScript engines (“runtimes”) in web browsers use em-
ulation for isolation. The Python interpreter is another example of
emulation-based isolation. The runtime for these languages is de-
signed such that the code can access only memory that belongs to the
domain.

Benefits Emulation can be simple to implement and provides “good
enough” isolation for many applications.

Downsides Emulation can be slow: to execute each logical opcode
in the emulated program, the emulator may have to run a large num-
ber of physical instructions. Emulation can be inflexible: emulated
programs may not be able to take advantage of special-purpose hard-
ware, unless the emulator explicitly grants access to these devices to
emulated programs.

isolation 5

2.2 Time Multiplexing

Another effective isolation strategy is to only allow the code from one
isolation domain to run on the hardware at once. When the isolation
mechanism switches from one isolation domain to another, it writes
the state of the hardware (e.g., registers, RAM) to storage, clears the
state of the hardware (e.g., zeros the contents of memory), and loads
the next program to run into the machine.

For example, gaming consoles implement this form of isolation:
one game runs at a time and has almost full control of the hardware
during this time. The state of the running game cannot tamper with
the state of a non-running game.

The security of this isolation scheme requires the isolation mech-
anism to protect the stored state of each isolation domain, and to
somehow protect the code that switches between them.

Benefits Time multiplexing is relatively simple to implement, and it
can give programs in each isolation domain almost full control of the
hardware (e.g., graphics hardware in game consoles)..

Downsides There can be a high cost of switching execution between
between isolation domains. Since the isolation mechanism clears the
state of the hardware during context switches, storing and restoring
the state can be costly.

2.3 Translation (Naming)

Translation is another common isolation mechanism in computer
systems. In a system using translation for isolation, an isolated pro-
gram may not access hardware resources (such as memory or files)
directly. Isolated programs can only access resources via pointers
controlled by the isolation mechanism. By construction, each process
in an isolation domain can only name resources inside of its isolated
context.

The canonical example of naming/translation for isolation is
virtual memory. In a system using virtual memory, the isolated do-
mains cannot read/write physical memory directly—they can only
read/write to virtual memory addresses..

To prevent one isolated program from accessing another’s memory,
the isolation mechanism ensures that the valid virtual addresses in
each domain point to a separate portion of physical memory. Modern
CPUs have special support for implementing virtual memory to
make the virtual-address translation as fast as possible.

Other examples of naming/translation isolation in computer sys-
tems are: file descriptors in Linux and virtual LANs in networking.

isolation 6

2.4 Example: Isolation in Virtual Machines

When we run several virtual machines on one physical machine,
we want each virtual machine to run as if it had its own physical
CPU, memory, and devices, but we want to run all of these virtual
machines on a single physical machine. For performance, we would
like to run instructions from the VM directly on the host CPU—but
we need to make sure, for example, that the VM does not access
memory belonging to another VM. To achieve isolation and good
performance, systems today use several effective techniques.

Here is how a virtual-machine monitor handles the three questions
that an isolation mechanism must answer:

1. What is the isolation domain’s state? A few important pieces are:

• the contents of memory,

• the values in the CPU registers,

• the data on disk.

2. What operations can a program perform on isolated state?
Virtual-machine monitors need to handle:

• CPU instructions that modify register states ,

• CPU instructions that modify memory, and

• operations to read and write devices.

3. How does the virtual-machine monitor ensure isolation?

• To handle updates to the register state, the monitor uses time
multiplexing: one virtual machine runs on the CPU at a time and
controls the CPU’s registers.

• To handle accesses to memory, the monitor uses naming/transla-
tion via virtual memory.

• To handle device operations, the monitor uses emulation. When
a virtual machine executes instructions that would cause device
I/O, the CPU jumps into some dedicated code in the monitor
that emulates these device operations. This is slow, but since
device I/O is usually costly anyways, the overhead is isolation
is tolerable.

2.5 Software interposition

A final isolation technique that we will discuss is software interposition.
Say that an isolated program wants to run the following code:

isolation 7

var a = b[c];

var f =;

f();

When using software isolation, a compiler can insert checks into
this isolated program to make sure that the memory access b[c] does
not access out-of-bounds memory:

if c >= b.size: error;

load b+c -> a (***)

After inserting these checks, the isolated code can run directly on
hardware, since the checks ensure that the isolated code cannot touch
any state outside of its isolated context.

A central challenge of using software interposition is handling
function calls. When calling the function f in the code snippet above,
the hardware might execute an instruction like:

jump *f

which would execute the code at the location stored in memory
location *f.

If an isolated program can set the value in *f to the location (***)

in the snippet above, the isolated program can skip the safety checks
on the memory accesses.

	Defining Isolation
	Implementing Isolation

