
Software Trust
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

The central question of this chapter is:

How do we know whether a system is running the software that we expect it
to be running?

This question comes up both when we are interacting with a machine
in person (e.g., typing a passcode into our phone) or across a network
(e.g., when sending sensitive data to a far-away server).

A separate question, which we will
discuss in future chapters is: How do
we ensure that the software itself is
“good” or “bug-free?”

Threats to software integrity. There are a number of threats that might
cause a machine to be running unexpected software:
• Malware. An adversary may install bad software onto the laptop,

such as a keylogger.
• User error. A user may inadvertently install malware onto a

machine. A classic way to trick users into in-
stalling malware is to show them a
warning (e.g., on a webpage) that says
“Your computer is infected. Please
download and install this anti-virus
software.”

• Software supply-chain problems. An adversary may inject mal-
ware into a real app’s libraries, by tricking or coercing a developer.

• Malicious updates. An adversary may trick the software update
process, converting a real piece of software into a malicious one.

The software supply chain. There are many steps that take place
between the development of a piece of software and its use:
1. Developers write code. Their code may use many third-party

libraries.
2. Compilers build and package the application.
3. The software vendor distributes binaries over the network.
4. Users download new software.
5. Users download software updates.
6. Users launch applications on their devices.
7. Running applications interact with remote servers running

code.

1 Library Imports

1.1 Example: Python Imports

In Python, importing a library requires downloading a library using
the pip package manager:

pip install requests

After that a user can import the package into their code like this:



software trust 2

import requests

Behind the scenes, the PyPi service maintains a database that maps
package names (e.g., requests) to a piece of code. When you type
pip install requests, the pip program fetches the code from the
PyPi repository and installs it on your machine.

Benefits Benefits of this approach are:

• The centralized service makes it easy for users to identify pack-
ages.

• It is relatively easily for users to discover and download software
updates.

• Developers do not need to run their own code-distribution service.

Downsides Downsides of this approach are:

• The centralized update service is a single point of failure: if an
attacker is able to change the code in PyPi, it can infect a large
number of machines at once.

• The end user has no idea who actually produced the library code.
The user only is able to specify the package name.

• In Python, the naming scheme is ambiguous: if there is a public
package and a private package both with the name requests, it’s
not clear when a user imports requests, which one the user wants
to import.

1.2 Example: Go Library Imports

The Go programming language takes a slightly different approach
to package management. In the Go programming language, a user
imports a library/package by specifying the URL of the package’s Git
repository. For example, an import might look like this:

import "github.com/grpc/grpc-go"

When compiling the code, the developer’s PC will contact the
server at the given URL over HTTPS (verifying the server certificate
via TLS) and download the software bundle. On the other end,
when a library developer wants to update their library, they do so
by interacting with the hosting server via HTTPS and whatever
authentication the server has set up—credentials, maybe two-factor
authentication, etc.

This has some good features: the server name is explicit so there
is no ambiguity about packages and the decentralized nature of spec-
ifying individual URLs avoids the necessity for a central server that



software trust 3

attracts attacks. However, this requires trusting the server hosting the
library to secure the update process and distribute software honestly.

1.3 More Explicit Trust: Code Signing

In each of these approaches, if an attacker can cause the user to
download a bad package without compromising the package devel-
oper. In particular, if the attacker can compromise Github, it can
cause Github to distribute malware to end users.

To prevent this attack, a library developer could sign their software
using their private key and include the signature with their soft-
ware package. To verify that a package is authentic, the application
developer’s PC can check that the signature is valid.

Of course, with any signature-based plan the mechanism for pub-
lic key distribution is crucially important. In the software distribution
case, the only reasonable plan is likely a Trust-on-First-Use based one
which accepts the first public key it sees but verifies that future soft-
ware updates use that same key. This protects against an adversary
taking control of, for example, the application’s Github repository af-
ter the end user installs the softare once. However, key management
is hard, so this is not widely used in practice.

2 Building Binaries

In order to run software on our computer, it is necessary to convert
the source code (which is, at least in principle, manually auditable)
into a binary that is much more difficult to audit. Since compiling
software is computation-heavy, most application developers typically
compile their software and distribute the binary to their users. If The XCodeGhost attack is an example

of how an attacker can insert a back-
door in a build system and exploit it to
distribute malware.

an attacker compromises the build server (or is able to backdoor the
compiler), then the attacker can cause users to execute bad code, even
if the attacker does not compromise the application developer itself.

Reproducible Builds. One promising approach to the problem of en-
suring that a binary is the faithful compilation of a piece of software
is called “reproducible builds.”

If a build process is reproducible, the function that turns a set
of source-code files into a binary is a deterministic function: if two
different people compile the same set of source-code files, they will
get exactly the same binary—the two will be bit-for-bit identical. This
allows anyone to audit a build: to check that a build server did its
job correctly. In addition, having multiple independent parties build
the same piece of software (and sign the result) can give an end user
some assurance that the build server behaved correctly.



software trust 4

Implementing reproducible builds is not trivial. Traditional com-
pilers introduced many sources of non-determinism—not necessarily
for any particular reason, just for convenience. Creating reproducible
builds requires eliminating all of these sources of non-determinism,
even across multiple versions of the compiler.

As of today, the Go programming language now supports repro-
ducible builds.

2.1 Juggling multiple versions of a library

Once a binary exists, the next step of the process is to distribute that
software to user devices. Typically, there are many different versions
of a piece of software around. When a user wants to install a piece of
software, they typically need to specify which version of the software
they want.

For example, in Python a user can specify a version of a package
that they would like to install when they run pip install. If an
attacker compromises the PyPi server, it can serve up any code it
wants to a user asking for a particular version of a library.

In contrast, in the Go programming language, when a users im-
ports a package, the go get software will store a hash of the down-
loaded code in a file called go.sum. If an attacker later compromises This is an example of “trust on first use”

in the context of code installation.the server serving the package (e.g., Github), the go get command
will refuse to install the package unless its code matches the stored
hash value.

3 Installing & Updating Software

Once a software developer finishes writing an application, it builds
and distributes it. When a user installs an application—e.g., by down-
loading it from a website or fetching it using a package manager—
how does the user know that it got the authentic version of the
software? As usual in systems design, there are many possible strate-
gies.

Application Developer Signs Package (Android Apps). One possible
option is to have application developers sign the software that they
produce. When application developers distribute their software, they
attach a their signature to it. This way, it does not matter how a user
obtains the software—a user can download an application bundle
from any server and know that it came from the developer who owns
the corresponding secret key.

When a user first installs a piece of software they need to some-
how obtain the software developer’s public key. Public-key distribu-



software trust 5

tion, as always, is messy: trust on first use is a common strategy.
Once the user has the software developer’s public key, the user

can easily verify that future updates to the software came from the
same developer. (To do this, the user can just check signatures on the
updates using the app-developer’s public key.)

An important caveat is that signatures do not guarantee freshness:
once signed, a package is always valid.

Repository Signs Packages. For systems with a central repository,
another plan is for the repository to sign packages. This again allows
the user to fetch the signed packages from untrustworthy sources—
from a content-distribution network, for example.

In addition to signing the packages, the repository typically signs
a timestamped manifest of the latest package versions. This allows
a user to check that they are not only getting the right software but
also that they are getting the most up-to-date software.

Many Linux package managers, such as apt, pacman, and rpm, use
signatures to integrity-protect packages.

Third-Party Validator Signs Packages. Yet another option that does not
require a single central repository is to have a trusted validator sign
packages. This involves sending the source code and package to a
third party, who will then perform some inspection of the package
and, if it deems a package to be worthy, provide some signature over
that package that verifies that the validator thinks the package is
trustworthy.

A number of software platforms use this strategy for protecting bi-
naries. On Android, there is no requirement to install apps from the
Google Play Store, but Google provides a service that inspects pack-
ages and attaches these signatures if the package passes. Similarly,
Windows uses a validation plan for its device drivers.

Binary Transparency. One different plan to help involves an audit log
that keeps track of all published binaries.

This helps prevent in particular targeted attacks—for example, if
some adversary has a specific target in mind and compromised the
distribution of the Linux kernel, they would likely be immediately
noticed if they introduced a backdoor into Linux for the whole world.
However, if they were able to introduce a backdoor and distribute
that backdoored version only to their target, the adversary would be
much more likely to evade detection. If clients check their received
binary against the publicly available one before installing it, this
personalized attacks can be avoided—if the attacker wants to change
the binary for someone, they will need to change it for everyone.



software trust 6

4 Booting the System: Secure Boot

In order to actually run an application, we rely on large amounts
of software running on our computer, from the applications them-
selves to the operating system that supports them. If the operating
system itself is compromised, for example, the modified OS could
undermine all of the defenses we just discussed. “Secure Boot” is one
strategy for getting some partial protection against these attacks.

Devices using secure boot have a small amount of read-only
memory (ROM) that contain a small piece of code that runs on boot.
This boot-ROM code has a signature-verification key baked into it.
There is no way to change this key—it is a fixed part of the hardware
Booting then involves several steps:

1. On boot, the CPU will begin running the hardcoded Boot ROM
code, which has a signature-verification key vkROM hardcoded into
it.

2. the Boot ROM will load the code for another layer called the
boot loader. The boot ROM will then verify that the boot loader
code carries a correct signature that verifies under vkROM. If the
signature is valid, the boot ROM code will begin executing the
boot loader. The bootloader has another signature-verification key
(vkbootloader)) baked into it.

3. The boot loader will load the code for the operating system and
verify it using vkbootloader. If the signature is valid, the bootloader
will redirect control to the operating system.

This way, the system can verify that only boot loaders approved
by the hardware manufacturer can run on the machine. These boot
loaders then can verify that only trusted operating systems are
executed.

Many systems use secure boot: iPhone, Android, chromebooks,
game consoles, and UEFI secure boot on PCs.

In some cases (e.g., UEFI secure boot) secure boot is a mechanism
to protect against malware that tampers with the operating-system
code. While the malware may be able to compromise the running
machine, after rebooting the machine, the user has some assurance
that it is running an uncompromised operating system.

In other cases (e.g., game consoles) secure boot is a mechanism to A number of researchers have used
PlayStation 3 consoles for brute-force
password-cracking and cryptanalysis
(e.g., factoring). Game consoles often
have a large number of CPU/GPU
cores, which make them appealing
hardware for applications that benefit
from massive parallelism.

prevent the device owner from installing a non-standard operating
system on the device. Game-console vendors often sell the console
hardware at a loss, and they make their money back by selling game
software. They have a strong incentive then to prevent users from
buying game consoles and using them for non-game purposes.



software trust 7

5 Secure attention key

When to approach a terminal and type your bank password into it,
how do you know that you are typing the password into the banking
app or into some other app (e.g., the flashlight app) on the machine?

A traditional approach to address this problem is a secure attention
key: there is a special button or combination of buttons that trap into
the operating-system kernel code—interrupting whatever application
that may be running.

Windows workstations, for example, required users to type the
keyboard combination CTRL-ALT-DEL to bring up a login prompt.
If a user entered this combination while an app was running, the
operating system would interrupt the application and open the
legitimate login screen.

Pressing the “Home” button on many smartphones has the same
effect.


	Library Imports
	Building Binaries
	Installing & Updating Software
	Booting the System: Secure Boot
	Secure attention key

