
Hardware Security
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far while discussing platform security, we have considered only
our software. However, software must run on some hardware, and
the security of this hardware is similarly vital—if an attacker can
undermine the security of our hardware, it does not matter how
strong our software security is. Luckily, hardware is typically much
more difficult to attack than software, but powerful attacks are still
possible.

As a running example for this chapter, consider the example of a
certificate authority that signs certificates given that some policy is
met. An equivalent example is a cryptocur-

rency wallet—transactions in the
cryptocurrency are authorized by a
signature over a transaction message.

This server will accept requests and respond with a signature
over that request if some policy is met. For example, an MIT CA
might enforce a policy like “I will sign only certificates for *.mit.edu
domains”. For this CA server, we can achieve some nice security
properties:

• We can prove the security of the signature scheme used under
concrete assumptions such as the hardness of discrete log.

• We can verify that the cryptography implementation faithfully
implements the signature algorithm on some ideal hardware
model.

In order to actually be used, however, we must first buy a computer,
load the code onto it, and run it (likely on a machine running other
software). This process is outside of the nice security properties
with achieved about our CA program. In cryptography and in soft-
ware, we are able to develop clean characterizations of the power of
the attacker. In cryptography, we assume that our adversaries are
bounded by probabilistic polynomial time. In software, we can model
our attacker as choosing arbitrary inputs to our software and accu-
rately capture an attacker’s power. Once we consider the hardware,
however, it becomes much more difficult to meaningfully define the
attacker’s power.

When we consider the real hardware that the system is running on,
there are many attacks that we must consider.

1 Hardware Bug

Much of what we have discussed so far has been cryptography
schemes that rely on trusted parties knowing some randomness that



hardware security 2

the adversary does not know. We have assumed that we have some
source of “true” randomness to use, for example, as a seed for a PRF.
When actually implementing cryptographic algorithms in a computer,
we need to actually materialize this “true” randomness. However, it
is not clear where this randomness should come from: computers
are designed specifically to behave as they are instructed by the
programs they run. Common solutions are to measure statistics about
the environment that should be hard for an adversary to predict. For
example, devices may use combinations of:
• Keypress timings
• Packet timings
• Clock
• Temperature sensor

All of these require “accumulating” randomness from the environ-
ment. A common hardware bug on embedded devices is to generate
keys when the randomness source has not accumulated enough ran-
dom measurements from the environment. For example, if a network
card generates a cryptographic key right after boot, this key may be
predictable if an attacker is able to accurately guess at the values of
the randomness source.

To help with this, many devices include specialized hardware
that uses some special circuit to generate randomness by measuring
randomness inherent to the universe.. Of course, developers must On Intel CPUs, this takes the form of

the RDRAND instructionthen use this randomness—a common error is to use insufficient
randomness, such as the time, instead of this hardware randomness.

2 Attacks without Physical Access

Perhaps the most concerning attacks are those that do not require
physical access to a machine.

2.1 Cache Timing Attacks

One major goal of operating systems is to provide isolation between
processes. Even if an attacker is able to run some software on the
same machine as our signing process, we would like to guarantee
that an attacker can not read, for example, the signing key used by
our signing process. However, the attacker and victim code both run
on the same CPU, and the victim may leave traces of secrets in the
state of the CPU.

For example, consider that our signing process runs and, depend-
ing on some secret value, either loads the value at memory address
A or does not. If the victim loads this address,the CPU will copy Because of attacks like this and others,

it is important to write secure code such
that it does not branch on secret values.

the value into the cache to speed up future accesses to the value. An



hardware security 3

attacker process that runs next can try to access this same memory
address and measure how long it takes to read the value. If the vic-
tim read that value, the access will be fast since it comes from the
cache, but if not, the data will have to come from the much slower
main memory. From the difference in this timing, the attacker can
learn about the victim’s access pattern, which may reveal data about
the victim’s secret. This may seem like an unlikely attack

since both the victim and attacker
must have access to the same memory
location, which process-level isolation
should prevent. However, operating
systems perform something called
deduplication that can be cleverly
taken advantage of to achieve this: if
the victim process uses OpenSSL, the
attacker process can also use OpenSSL.
The operating system will see that both
processes are linking the same library,
and may map a section of virtual
memory for each process to the same
physical memory.

2.2 Rowhammer

Data in a computers memory is stored in what is effectively a grid
of capacitors. These capacitors do not store values indefinitely, and
so their values must be refreshed every so often (commonly every 64

milliseconds). Reading a chunk of memory drains the corresponding
capacitors a bit, and they must then be rewritten. Memory is read
one row f this grid at a time. Reading a row drains the corresponding
capacitors, requiring them to be rewritten. This rewriting involves
voltage fluctuations, and since modern memory is so dense, these
voltage fluctuations can cause neighboring rows to discharge more
quickly that the refresh interval is equipped to handle. Surprisingly,
reading a single row repeatedly can cause bits in an adjacent row to
flip.

An attacker could take advantage of this by “hammering” a mem-
ory location, causing a bit to flip in memory that belongs to another
process or to the operating system. In some cases, this was enough to
allow the attacker to learn a secret or bypass isolation, etc.

3 Physical Attacks

If an attacker has physical access to a device, an entirely new class
of attacks becomes possible. They can measure the device, introduce
faults to the device, and more.

3.1 Probing Attacks

An attacker with physical access to a device can measure many
things about the device’s behavior that a remote attacker could not.
For example:

• Place probes on the pins of a chip

• Measure power consumption of a chip and watch for patterns

• Measure optical emissions of a chip with an electron microscope

• Measure RF emissions from a chip



hardware security 4

• Monitor the blinking light on an internet router

The information that an attacker can learn from attacks like this
may be limited, but even very slow information leakage can be
enough to leak a key in a relatively short amount of time. Protecting
against these types of attacks is difficult since the attacker can do
such a broad range of things. However, if we make certain assump-
tions about the attacker’s power, we can achieve principled solutions.

Defense against Probing Attacks. One assumption that may be reason-
able to make is that an attacker can probe at most t wires of a circuit.
By using techniques like secure multiparty communication, it is pos-
sible to build a circuit that implements something like a signature
scheme, but that does so without leaking anything about the secret
given this assumption.

3.2 Fault Attacks

An attacker can also introduce faults that the system was not de-
signed to handle. For example, they can point a heat gun or a laser
at the chip, hoping to cause some bit flips. If they are successful,
these bit flips may leak a secret key or corrupt a kernel data structure,
allowing the attacker to take over the system. Designers of satellite systems have to

think about similar attacks, but in their
case the attacker is the sun! Cosmic rays
carry enough energy to flip bits of CPU
registers or memory.

3.3 Supply Chain Attacks

When we buy an device, we assume that the hardware inside is not
working against us. However, there is a long chain of steps that hap-
pens before the device gets to us—it is built in the factory, packaged,
mailed across the world to a retailer, stored in a warehouse, packaged
and mailed again, and so on. An attacker that has control over any of
these steps could intercept the device on its way to you and modify it
somehow. For example, they could:

• Modify the randomness source to something predictable

• Preload keys that the attacker knows

• Add extra input/output interfaces

• Add or enable management interfaces

There are no great solutions to defend against this—inspecting
the chips is impossible since they are so small, building a device
yourself is much too hard, and so on. One solution that can improve
the protection is to build a system out of n identical devices and use
a strategy like secure multiparty computation to protect against cases



hardware security 5

where at most n − 1 of these devices is compromised by a supply
chain attacker.


	Hardware Bug
	Attacks without Physical Access
	Physical Attacks

