
Case Study: iOS Security
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

There are several things we might worry about when it comes to the
security of a smartphone, spanning software, platform, and hardware
security:
• Malicious apps that steal contacts, eavesdrop on calls, or steal you

credit card data
• Someone stealing a phone and extracting secret data
• A non-Apple operating system that is loaded on a phone (i.e.

Jailbreaking)
• Malicious chips installed in the factory, en route to the store, or

during repairs
• People selling fake phones as real iPhones

The iOS platform is a very well-designed integration of the topics
that have been covered in the platform security section and which
addresses many of these considerations effectively.

1 App Security

In any platform, there is a balance between the “openness” of the
platform—who is able to run software on it—and the access that
software has to sensitive data. Of course, the most secure platform
is one that doesn’t do anything at all: it is very closed and provides
no access to sensitive data. More practical systems have a different
balance:

• A typical laptop is very open—anyone can write software for
it—and every application is able to access the entire filesystem.

• The web is still very open, as any website can include JavaScript
code that will execute on your machine, but access to sensitive
data is tightly locked down via language sandboxing.

iOS improves its security story by locking this down: applica-
tions are given some (checked) access to sensitive data, but are very
closed—applications must go through a review process and only
approved developers can write software for iOS. In addition to security policies, the

review process checks that applications
follow policies in place for business
reasons, such as the restriction that
digital purchases must go through
apples In-App Purchase mechanism.

iOS apps run in a sandbox that does not provide access to a shared
filesystem and that allows communication between apps only though
limited APIs provided by the operating system. If an application
wants to interact with data that is controlled by the operating system,
such as VPN configurations or health data, the application developer



case study: ios security 2

must ask for access to special APIs and have that access approved as
part of the review process.

1.1 Things Can Still Go Wrong

Even with these checks and the sandboxing, malware can slip
through the gaps. As we discussed earlier, XCode Ghost was a
compromised version of the XCode compiler distributed via mirrors
behind China’s firewall that inserted malware into apps developed
by honest developers. This malware was not found in App Store
reviews, allowing apps that people expected to be honest to run arbi-
trary malicious code. Even with the sandbox, an app has quite a bit
of access to do potentially sensitive actions:
• Learn Country
• Learn Language
• Learn UUID, before recent privacy changes
• Read and modify clipboard contents, including copied passwords

or credit card numbers
• Open a URL that points to a phishing webpage

Despite this, isolation buys a lot of security. A malicious app that
makes it through review cannot access your text messages, browser
history, etc.

2 iOS Secure Boot

For security and business reasons, Apple would like to ensure that
an Apple-signed operating system is running on the phone. This
prevents a malicious actor from distributing a backdoored operating
system and convincing people to install it on their phone and against
malware that tries to persistently modify the operating system. It also
prevents users from installing a customized operating system on their
phone, bypassing the Apple restrictions on apps and other policies.

To achieve this, iOS uses a secure boot system as described in
the last chapter. Each phone ships with a Boot ROM that cannot be
changed that is burned with some public key for a secret key that
Apple knows. This boot ROM is responsible for verifying that this
secret key signed the code for a low-level bootloader and running
that bootloader. This bootloader will then verify and check the
operating system kernel. This allows the bootloader and the kernel
to be updated as necessary, but places a root of trust in the boot
ROM that cannot be updated. If the bootloader is updated by anyone
besides Apple, however, the boot ROM’s signature check will fail and
the boot ROM will refuse to run the bootloader.

Many device owners that wanted to customize their devices



case study: ios security 3

sought to modify the operating system to add new features. This
process generally is referred to as “jailbreaking”.

2.1 Checkra1n Jailbreak

One set of exploits that constituted a jailbreak was named checkra1n.
This took advantage of complex code in the unchangeable boot
ROM—the devices supported running code directly via USB, by-
passing the low-level bootloader and the OS kernel, which meant
that the boot ROM contained code to act as a USB peripheral. USB
code is quite complex, and as with most complex code, it had bugs.
checkra1n took advantage of these USB bugs to trick the phone into
executing arbitrary code.

Because the Boot ROM can never be updated, it was impossible
for Apple to fix these bugs: this jailbreak will work forever on the
devices that had the bug.

However, these bugs did not allow the jailbreak to bypass the
signature check entirely, so this exploit needed to be run on every
boot—if you tried to reboot your phone without running this, it
would no longer be jailbroken.

3 iOS protection for data at rest

If a phone is stolen, it would be nice if the theif could not learn any
sensitive information from the device. As with any time that we want
to hide data, encryption is the answer here—a simple solution is to
encrypt all data on the phone with 128-bit AES. However, this does
not tell the whole story: in order to decrypt the data, the key for
this encryption must be stored somewhere. We can’t store the key
in normal flash memory, since then anyone could use it to decrypt
the data. We also can’t use the only secret that the user knows, their
6-digit PIN, since it is much too short to be an AES key.

Even an approach like using a PRF based on the key to extend it
into key for AES will not be secure—6 digits is so short that it can
easily be brute-forced. Instead, recent iPhones use a special chip
called a “secure enclave” that holds the key and provides access to
it only if the user enters the correct PIN. Doing so allows the secure
enclave to enforce strict guess limits that prevent brute-forcing the
PIN.

The secure enclave is essentially another processor that runs its
own operating system. It uses a similar secure boot system to prevent
tampering with the secure enclave’s operating system, but it also uses
measured boot to derive the secret encryption key from the contents
of the OS being run—if an attacker modifies the secure enclave’s



case study: ios security 4

operating system, the encryption key will change and the attacker
will not be able to decrypt the phone data.

Importantly, the secure enclave has access to two things that the
main application processor does not. First, on the first boot: the
secure enclave generates a long-term secret unique ID and burns it
into internal fuses. The enclave also has access to a secure NVRAM
module that has a limited amount of secure storage with support for
real deletion. This secure storage contains the root encryption key In typical storage, deleting data does

not really delete the data—instead, it
marks it as deleted and indicates that
the operating system should overwrite
it in the future. However, if someone
inspects the storage directly, they are
likely to be able to recover the data
that was deleted. Apple’s “effacable
storage” that is used for the secure
enclave supports deleting data such that
it cannot be recovered.

itself, a hashed version of the user’s PIN salted with the UID, and a
guess counter that keeps track of how many incorrect guesses have
been made.

When put together, these elements enable the following process:
1. User enters a PIN
2. iOS passes the PIN to the secure enclave
3. The enclave enforces some delay after each guess
4. The enclave passes H(PIN, UID) to the secure storage. The communication between the secure

enclave and the secure storage is also
encrypted with a key burned into the
enclave and into the secure storage.
This prevents an attacker with a probe
on the wire from learning the data.

5. Secure storage uses included logic to check whether the
hashed PIN matches the stored hash.
• If correct, return the root AES key and zero the guess

counter
• If incorrect, increment the guess counter. If the guess

counter is too high, erase the key from the effacable stor-
age.

6. If the PIN was correct, the enclave passes the key returned
from the storage to the AES engine.

7. The application processor sends data to the AES engine to be
encrypted or decrypted. Note that the application processor

never sees the AES key—it is seen
only by the secure enclave and the
(hardware) AES engine.3.1 Biometric Unlock

For convenience, however, iPhones do not require entering a PIN on
every unlock. A PIN unlock is always required on the first unlock
after boot, but afterwards they allow unlocking with a Biometric such
as Face/Touch ID. The phone includes dedicated biometrics hard-
ware that is responsible for reporting the “hash” of the measured face
to the secure enclave. The secure enclave then checks this against the
stored one, and unlocks the device if there is a match.

A possible attack, then, might look something like the following:
steal a phone that has been unlocked at least once and relocked
(almost always the case). Then, before it runs out of battery and shuts
down, replace the Face ID chip with a malicious one that always
reports the correct hash. Without protection against replacing the
biometric hardware, an attack like this would allow an attacker to
access all the data on your phone. To address this, iPhone include



case study: ios security 5

yet another shared key between the secure enclave and the biometric
hardware: if the Face ID module is replaced, the keys will not match
and the phone will refuse to unlock.


	App Security
	iOS Secure Boot
	iOS protection for data at rest

