
Software Security
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

Software vulnerabilities are at the root of some of the most serious
security failures in real-world software. A huge number of security

In terms of practical consequences on
deployed computer systems, software
issues are perhaps second only to
phishing attacks.

issues come from software-implementation bugs. A rule of thumb
to keep in mind is that, for reasonably carefully-written code, there
will be around one bug for every 1000 lines of code. Many of these
bugs may seem minor, but surprisingly, almost any kind of bug can
be used in a security exploit and lead to compromise—even bugs in
code that may not seem security-critical. One principle to remember

A common strategy to exploit seem-
ingly benign software bugs is to string
together a number of benign bugs into
an exploit that does something very bad
from a security perspective.

is then:

“Any bug can be a security bug.”

Protecting the security of computer system thus requires eliminating
software bugs.

Many bugs can lead to security exploits, but some of the most
common types of exploited bugs include memory corruption bugs
(buffer overrun, use after free, etc.), encoding and decoding errors,
cryptographic implementation bugs, race conditions and resource-
consumption bugs.

1 Memory Corruption

Memory-corruption bugs show up in languages, such as C and C++,
that do not guarantee any sort of memory- or type-safety properites.
The two most common types of memory-corruption bugs are: (1)
buffer overflows and (2) use-after-free bugs.

1.1 Buffer overflow

As an example of a memory-corruption bug, consider the following C
code:

void f() {

char buf[128];

gets(buf); // write bytes from stdin starting

// at &buf[0], followed by a ’\0’

}

This code allocates an array of 128 bytes and then uses gets to
read a string from standard input into the buffer. The gets rou-
tine will read the input from until it reaches the end of the string

software security 2

(indicated in C with a zero byte), then it will write the correspond-
ing string into the buffer. Arrays in C have no length information
attached to them, so the gets code will happily accept an input
strength of any length—possibly much larger than 127 bytes.

So, what happens if the input is longer than 128 bytes? The gets

function simply writes until it finds a NULL character (‘\0‘) in the
input. So if the input string is too long, gets will simply write past
the end of the memory allocated for buf. If an attacker gives an input
that is longer than 128 bytes, the attacker will be able to write bytes
of its choice into the memory after buf.

In C, the buf array will be allocated on the call stack, which will be
laid out in memory like this:

... rest of stack ...

return address of f’s caller

buf[127]

...

buf[2]

buf[1]

buf[0]

You might think that the fact that this
problem is caused in part by having the
stack in C grow down, so that running
off the end of the buffer can cause the
attacker to overwrite the return address.
It turns out that similar attacks are
possible even on architectures in which
the stack grows up. The fundamental
problem is that the attacker can scribble
over data in the stack.

Once the f function ends execution, the program will jump to
the return address sitting after at the end of there buffer. So if an
attacker can write data past the end of the buf array, the attacker
can overwrite the return address of f on the stack and the attack
can cause the program to jump to and begin executing code at an
arbitrary location in memory.

One simple mitigation is to modify the compiler to refuse to
compile programs that use routines such as gets. We discuss other
mitigations below.

To avoid this kind of buffer overlow bug, we need to somehow
ensure that gets only writes within the bounds of the buffer.

Mitigation: Runtime checks Modern compilers can try to check in
real time whether a memory access goes past the end of the buffer
and will crash the program if so. These defenses are imperfect but
prevent the most naive type of bug.

Mitigation: Bounds Checking Another mitigation is to ensure that the
input is not too large before reading it in. To do this, we can insert a
check before writing.

software security 3

Consider the following slightly more complex code, which receives
n records that are each 16 bytes long and writes them into the buffer:

void f() {

char buf[256];

uint32_t n = get_input();

for (uint32_t i=0; i < n; i++) {

// read record i into

// buf[i*16] .. buf[i*16+15]

}

}

This code will write beyond the end of the buffer if n*16 is greater
than 256. We then may consider adding a check like the following:

#define sz 256

void f() {

char buf[sz];

uint32_t n = get_input();

if (n * 16 > sz) {

// input too long!

return

}

for (uint32_t i=0; i < n; i++) {

// read record i into buf[i*16] .. buf[i

*16+15]

}

}

However, consider an adversary that inputs data such that n =

2^30. If we were computing on paper, our check would work just
fine: 230 · 16 = 234, which is certainly greater than sz. However,
uint32_t is a 32-bit value and 234 will not fit into the 32 bits allocated
for that integer—the computation will overflow. It turns out that if
you try to compute n*16 in C when n is 230, the answer is zero! Thus,
our check will pass but our code will still write beyond the end of the
buffer.

To prevent this type of overflow, the program can explicitly check
for overflow—it’s tricky to do, but important when accepting user-
provided input.

1.2 Use after free

Another common type of bug is a use-after-free bug, in which a
programmer frees a chunk of heap memory and then reads or writes
it after freeing it.

software security 4

In C this happens when a programmer uses malloc to allocate
some memory, then calls free to free it, and then accesses it. An
example piece of code with this bug is here:

void f() {

char *req = malloc(1024);

int err = read(0, req, 1024);

if (err) free(req);

// ***
if (err) printf("Error %d: %s\n", err, req);

}

If some other thread in the program calls malloc when the code is
a point ***, the other thread of execution may use the array req for
something else. Then the printf line could print out some other
contents of memory—possibly exposing cryptographic keys or other
sensitive data.

These bugs are very difficult to track down since it is difficult for
a compiler to figure out which memory a piece of code should or
should not have access to. One way to defend against these bugs is to
use a programming language, such as Rust, that explicitly associates
a “lifetime” with each piece of memory and can prevent code from
accessing free’d memory.

2 Encoding Bugs

Another common source of security bugs comes from encoding and
decoding data from and to language data structures.

2.1 SQL Injection

Most web sites that we interact with consist of some application
code—for example, a Flask app—that communicates with a database
via SQL queries. For example, a phone-number-to-name lookup site
would likely use SQL queries that look like

’SELECT name FROM users WHERE phone = "6172536005"’.

When accepting a phone number, stored in variable phone, from a
user, the same query might look like:

/* WRONG!!! */

’SELECT name FROM users WHERE phone = "’ + phone + ’"’.

The problem with using string interpolation is that an adversarial
user can supply a phone number like

123"; DROP TABLE users; "

software security 5

The SQL engine will then receive the query:

’SELECT name FROM users WHERE phone = "123"; DROP TABLE

users;’,

which will have the effect of deleting the users table.
The principled way to solve this problem is to have a strategy for

unambiguously encoding data. In SQL, if you have a quote character "
in a data string, the programmer writes it as \". This is called “escap-
ing” a string. A SQL library can automatically escape characters such
as quotes, but escaping is not as easy as replacing each quote with its
escaped equivalent—you need to worry about escaping the escape
character “\\” and all sorts of other subtleties.

Modern libraries for interacting with databases perform escaping
automatically to avoid these “SQL injection” attacks.

2.2 Cross-Site Scripting

Another common behavior is to take input from the user via a form,
save it to the database, and later render that input to another user
as HTML. For example, a social media site will have each user en-
ter their name when the sign up, and may use some code like the
following to render another user’s list of friends:

def render_friends(friends: List[str]):

print("<h3>Friends</h3>")

print("")

for name in friends:

print("" + name + "")

print("")

If a friend’s name is something expected, like “Alice” or “Bob”,
this works fine. However, what if a friends sets their name to some-
thing like <script>send_to_adversary(document.cookie)</script>?
Now, the rendered HTML will look something like the following:

<h3>Friends</h3>

Alice

Bob

<script>

send_to_adversary(document.cookie)

</script>

This script tag runs the contained Javascript code in the viewer’s
browser. Anyone who views a friends list with this adversary in
it, then, will have their authentication cookie sent to the adversary,
potentially allowing the adversary to log in as that user.

software security 6

The core of this issue is similar to the SQL injection attack: an
attacker is able to insert code that the victim’s browser will run. To
prevent this, the solution is again escaping: we typically replace
the angle brackets (< and >) used to denote HTML tags with the
sequences < and >. Now that & has a special meaning, we also
must escape it as &. Modern web frameworks have “templating”
systems that automate this escaping process.

2.3 Decoding: Android Apps

The application-installation process on Android also suffered from
decoding errors. Apps on Android (.apk files) are just renamed ZIP
files.

Apps shipped with a signature. When installing an app, Android
would first check that the contents of the ZIP file match the signature.
If the signature checked out, Android would then install the app.
However, the signature checking code and the installation code used
different ZIP decoders. An attacker was able to take advantage of a
historical quirk of the ZIP format that meant that ZIP holds two lists
of files: the signature checker used one list, while the installer used
the other list. By pointing to real files from one list but to malicious
files in the other list, an attacker was able to bypass this signature
check and cause a user to install malicious code.

3 Concurrency Bugs

When systems have code running in parallel, things become much
more difficult to reason about, and as a result, many bugs can occur.
Consider the following code running on a bank server:

def xfer(src, dst, amt):

s = bal[src]

d = bal[dst]

if s < amt:

raise InsufficientBalanceError

balances[dst] = d + amt

balances[src] = s - amt

By executing two of these xfer requests in parallel, an attacker can
cause unexpected behavior. For example, if an attacker tries to send
money from a single source to two destinations at once, the check s <

amt may pass in both executions, and both destinations will then be
updated to have money. However, the source will only be deducted
once, since s is stored before any money is transferred.

The fix is to make sure that there is some kind of locking or
concurrency-control strategy in place. The important high-level

software security 7

bit is to be thinking carefully about how concurrent execution can
affect your software, in cases when multiple threads of execution can
access the same data at the same time.

3.1 File system races / Time-of-check-time-of-use (TOCTOU) bugs

When deadline with files, symbolic links can cause all sorts of chaos.
A piece of code might want to check that it is deadline with a regular
file—rather than a symbolic link—before opening it. A bad way to
implement would be like this:

// WRONG

if(lstat(path, &st) < 0) error();

if(!S_ISREG(st.st_node)) error();

// ***
int f = open(path, O_RDWR);

...

The problem is that if an attacker can replace the file when the code
is at line ***, the attacker could swap out the regular file with a
symbolic link that points to somewhere else. The openat() API call gives a way to

open a file while ensuring that the file
is of a particular type.

The way to defend against this bug is to change the interface.
Newer versions of the POSIX file-system APIs enable checking for
this type of property in a way that defats race conditions.

4 Resource Usage

Other bugs allow attackers to consume many resources on a system,
denying service to honest users.

For example, hash tables typically use a hash function designed
to be very fast when deciding which bin to place an input in. These
hash functions are typically not collision-resistant in the crypto-
graphic sense. Hash tables work well when inputs get distributed
evenly across all of the bins. However, if multiple inputs get mapped
to the same hash value, the performance of a hash table deviates
from the constant-time idea we have of a hash table—hash tables
typically revert to using a linked list of all the values for a given hash
value.

If an attacker is able to predict which bin their input will end up
in, they can maliciously craft inputs that create a huge linked list,
resulting in very poor performance for the hash table.

The way to defend against this type of attack is to use a keyed
hash function—essentially a pseudorandom function—where the
implementation does not reveal the secret key to the attacker (over
the network, etc.).

software security 8

5 Dealing with Software Bugs

As we have seen, there are many types of bugs so there are many
ways to defend against them. Here are some general rules:

Clear Specification. One way to avoid design-level bugs is to have a
clear and complete specification about what your program is sup-
posed to do. In particular, for things such as encoders and decoders,
a precise specification can make it easier to check that you have
handled all of the important corner cases.

Design. A simpler design is easier to understand, and thus bugs are
easier to find.

Limit Bug Impact. Some techniques that we will discuss, such as
privilege separation, allow us to protect security even when software
bugs arise.

Find and Prevent Bugs at Development Time. Techniques such as
fuzzing can find bugs before they hit production systems.

Catch an Mitigate Bugs at Runtime

Deploy Bug Fixes Quickly A big advance in browser security came
from mechanisms for pushing out software updates quickly.

	Memory Corruption
	Encoding Bugs
	Concurrency Bugs
	Resource Usage
	Dealing with Software Bugs

