
Privilege Separation
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

The last chapter left off on a somewhat unsatisfying note: our
software is bound to have bugs and those bugs are likely to be ex-
ploitable. Today, we will try to limit the impact that these bugs can
have by planning for compromise and aiming to limit the damage that
each component can cause if an attacker compromises it.

The philosophy that we will employ is called the Principle of
Least Privilege. The idea is to give each component in the system
the least privileges needed to do its job. By limiting the access that In real systems, it is often costly to

implement least privilege in the strictest
sense possible. You should think of
the principle of least privileges as a
difficult-to-achieve design goal, rather
than a rule that every component of
every system must satisfy.

each component of our software has to do sensitive actions, we can
prevent the compromise of our whole system when a single piece is
attacked.

To summarize our strategy:

Principle of Least Privilege: Each component should have the smallest
set of privileges necessary to do its job.

As a concrete example, a web server might have some networking
code, it might talk to a database server, and it might use some cryp-
tographic keys. One way to architect the system with least privilege
would be to split the server into multiple distinct processes—one that
receives network requests, one that interfaces with the database, and
one that uses the cryptographic keys. These components then would
speak to each other using narrow, restrictive APIs.

In some sense, a system that perfectly implements the principle
of least privilege gives one with the “best security we could ask for,”
in the face of component compromise. However, most real systems An orthogonal, but important, strategy

is to reduce the number of privileges
that a component needs to do its job.

do not completely implement the principle of least privilege for a
number of reasons:

Challenge: Splitting Boundaries. A large piece of software has many
components that often have many points of interaction. To effectively
implement least privilege, we need to find boundaries at which
we can separate our software. A few common ways to partition a If we don’t split up a large piece of

software into components, the software
just consists of one über-component.
An attacker who breaks into this one
component can hijack the entire system.

system or application are:

• Isolating by user: In an operating system, different users of the
systems have different privileges. This way, if an attacker com-
promises one user’s account it does not compromise the entire
system.

• Splitting by feature: In large business applications, different
features (e.g., search, user management, mail) run as isolated com-

privilege separation 2

ponents. This way, a bug in one component does not necessarily
affect the entire system.

• Splitting off buggy code: The Firefox web browser uses special
sandboxes to compartmentalizes bug-prone video codec code
(Section 3). This way, if a malicious website is able to exploit the
codec code, it is not so easy for the attacker to compromise the
system.

• Separating exposed versus internal code: Google’s front-end
HTTP servers are isolated from the servers that run core appli-
cation logic. This way, an attacker on the network is one step re-
moved from the servers with access to Google’s internal resources
(databases, etc.).

• Isolating sensitive data or keys: Certificate authorities (CAs) use
hardware security modules to isolate the cryptographic keys from
all other code in the system. Laptops and servers sometimes have
separate cryptographic co-processors for this purpose as well.

Challenge: Interface/API. If we chop our monolithic app into different
domains, we also need to clearly define an API that the different
domains can use to interact. This API must allow us to preserve the
functionality of the system while making it difficult for an attacker
that compromises one component from compromising an adjacent
one.

Some strategies for interfacing between different components of a
system might be

• remote procedure calls (RPCs) over a network,

• message queues,

• shared memory,

• shared database, or

• shared files or directories.

In designing interfaces between isolated components, we tend to
worry about:

• Functionality: Does the isolation plan allow the application to
work as it should?

• Security: Does the isolation strategy prevent the compromise of
one component from affecting others?

• Performance: How much performance overhead does the isolation
mechanism add?

privilege separation 3

• Complexity: How much code does the isolation mechanism
require? If the compartmentalization strategy requires a large
amount of code, this code might introduce new vulnerabilities.

1 Example: Logging

Most systems use logging to keep track of the actions that an ap-
plication has performed. That way, if an attacker compromises the
application, system administrators can look at the log to see what
happened and how to mitigate it. For a logging system to be useful,
it must be difficult for an attacker who compromises the application
to erase the log.

It is very natural to separate out the log into a separate component:
the app’s functionality is almost entirely separate from the log, and
the app’s interface to the log can be very simple. The app should be
allowed to append to the log and read from the log—the app should
not be allowed to remove entries from the log. This way, compromise
of the application or log server will not be enough to erase the log.

Application ----- Log entries -----> Log server

server |

| | Append/Read API

| | (No delete)

| v

-------- No access -----> X Log

Figure 1: One way to architect
a logging system. An attacker
that compromises the applica-
tion and/or log server may not
be able to erase the logs.

2 Example: Cryptography Keys

Many applications use cryptographic keys for authentication: certifi-
cate authorities need to generate signed certificates for their clients,
cryptocurrency wallets need to sign transactions, and WebAuthn re-
quires an authenticator to sign a challenge from the relying party. In
all of these applications, we worry a lot about an attacker stealing the
application’s secret signing key. Towards the goal of protecting cryp-
tographic secrets, we often isolate the code that uses cryptographic
keys into a separate software (or even hardware) component. In par-
ticular, we might create a cryptography component whose only API
is sign(msg) and get_public_key(). In this way, even if an attacker
compromises the application, it cannot easily extract the secret key.

This design does not completely protect us against the compro-
mise of the application. In particular, an attacker who compromises
our app can still call sign() as much as they like to sign any message

privilege separation 4

they like. At the same time, having the key isolated to this crypto
component allows us to add checks inside the crypto component to,
for example, reject messages of the wrong type. If our service is a Although in many cases the things we

are worried about an attacker asking
for signatures of will pass this type
check: for example, for a CA, this
would still allow an attacker to generate
a certificate for their malicious website.

certificate authority, we could set up our crypto component to verify
that each message is an actual signature before signing it.

Application <----- Requests -----> Key manager

| ^

| | Sign API

| | (No extraction

| | of key)

| v

-------- No access -----> X Signing key

Figure 2: A common architec-
ture for isolating cryptographic
keys from an application.

This division also allows our crypto code to do some meaningful
logging: imagine that the crypto module saves every signature
it creates to a log. Compromise of the main app would allow an
attacker to generate arbitrary signatures, but administrators could
then see every signature that was generated during the compromise.
This would be very helpful in recovery.

3 Example: Media Codecs in Web Browsers

Media codecs (e.g., for JPEG decoding) are notoriously complex and
bug-prone: codec libraries have been at the source of many web-
browser exploits. If we were able to isolate these codecs, we could
make it less likely that a codec bug allows an attacker to access data
other than the media file being decoded.

Browser tab ----- Encoded data-----> JPG/Media codec

<------- Bitmap --------
Figure 3: The Firefox browser
isolates media codecs in a
separate sandbox.

Isolating codecs may not always be as trivial as Fig. 3 makes it
seem. In many cases, codecs require a sophisticated interface to the
browser tab: the codec library may progressively decode videos as
data arrives, for example. Even image decoders progressively decode
images, improving resolution as more data arrives. Supporting this
functionality without adding vulnerabilities or excessive latency
requires careful API design.

Firefox isolates these risky codecs using the language-level isola-
tion that the WebAssembly language provides.

privilege separation 5

4 Example: Server for Network Time Protocol (NTP)

Operating systems use the network-time protocol to fetch the current
time from time servers on the Internet, and to update the current
time to match. Setting the time requires root privilege on Unix-like
systems, but NTP also requires network accesses; the networking
code can be complicated and bug-prone. To prevent an attacker who
finds a bug in these network protocols from gaining root privilege
on our machine, many systems separate the two into a process that
handles talking to the NTP server on the network and a privileged
process that accepts the time from this other process and sets it. This
way, an attacker who find a bug in the network code can only set the
time—they cannot perform arbitrary actions as root. In addition, the
time service may impose some policy on time changes (e.g,. that time
can never go backwards).

Launcher --------> Network <---> Web

| Service

| |

| | "adjust clock"

| v

|-------------> Time Service [Policy enforcement]

Figure 4: Modern operating
systems implement a network-
time protocol (NTP) client as
separate processes. This way, an
attacker who compromises the
client over the network cannot
arbitrarily corrupt the system
time.

5 Example: OpenSSH Server

A secure shell (SSH) server has access to many sensitive resources:
network port 22, a host secret key, the system’s password file, and all
users’ data. When it starts, the SSH server runs a “monitor” process
that listens for connections on port 22. When the monitor receives a
connection, the first thing it does is to spawn a new per-connection
worker process that communicates over the network. The worker
client has no access to the host key or password database—the
worker process can only ask the monitor for help in authenticating.
The monitor-worker API supports a few operations:

• a signing operation, that instructs the monitor to sign a protocol
transcript,

• a password-authentication operation, that instructs the monitor to
check a password (this can be rate limited to prevent password
guessing), and

• a start-session operation, that instructs the monitor to create a new
process with a shell for the user.

privilege separation 6

[Host key]

[Passwords]

[Port 22]

|

v

Monitor --- Spawns per client --> Worker <--- Client1

| Worker <--- Client2

| ...

--------> Session <----------> Worker <--- ClientN

process

Figure 5: The OpenSSH server
is split into multiple process to
mitigate the compromise of the
network-facing code.

While this architecture adds quite a bit of complexity to the
OpenSSH server, it has paid off in terms of mitigating the impact
of vulnerabilities in client-facing code.

6 Example: Web applications

Companies will often implement Web applications (e.g., a photo-
sharing website) as a number of separate services, running on sep-
arate physical machines. Client connections come into a front-end
server that terminates the TLS connection and proxies client data
to a front-end application server. The front-end server then routes
requests to one or more application services, each of which may have
access to different databases. For example, the login service may have
access to the password database, while the profile service may not.

[TLS Key]

|

v

Client ----> HTTPS ---> Front-end

server service

^

|---> Login <--> Password DB

| service

|

|---> Profile <--> User DB

| service

|

|---> Photo <--> Photo DB

service

Figure 6: Large Web services
tend to isolate different appli-
cation features into different
services, often on different
physical machines. The system
gates access to these services
via minimal front-end client-
facing servers.

privilege separation 7

7 Example: Web client

When you open a PDF attachment in Gmail , you might worry that
the PDF could exploit some bug in your browser that could steal
your sensitive Google data. To make this kind of attack more difficult,
Gmail serves attachments and other suspect files from a separate
domain (“origin’)): googleusercontent.com. Code loaded from
googleusercontent.com cannot access cookies or data for google.com.
In this way, even if an attacker can somehow run JavaScript in your
browser, it cannot easily steal your Google cookies.

8 Example: Web browser

Web browsers today are extraordinarily complicated pieces of soft-
ware. The sensitive data that a browser is trying to protect are things,
such as user cookies, cached data, browser history, and other user
data. The browser may spawn new processes to handle rendering
for each site from each distinct domain/origin. In this way, if an at-
tacker from one origin can exploit a bug in the JavaScript engine, the
attacker may still not be able to compromise sensitive user data from
other domains/origins. GPU code, which is extremely complicated
and bug-prone, may run in yet another process. Today, compromising
a browser entirely often requires finding and exploiting a collection
of bugs in multiple components.

codec codec

^ ^

| |

v v

mit.edu nytimes.com

| |

| |

---- Browser core <------> UI <---> GPU

|

v

[Cookies]

[Cached data]

Figure 7: Web browsers may
isolate the execution of each ori-
gin’s code in a separate process.
They further isolate compli-
cated and bug-prone codecs
and GPU code in separate
processes.

9 Example: Payment Systems

Processing credit-card transactions in web applications is risky: if
a vendor suffers a compromise, the credit-card network may fine

privilege separation 8

them or kick them off the network. To avoid ever having to handle
credit-card data, most websites use an external payment-processing
service that handles credit-card information. When the user makes
a purchase, the vendor redirects the user to the payment-processing
service, who collects the user’s credit-card data. After payment, the
payment-processing service redirects the user back to the vendor’s
website.

--------> Web app -----> Order DB

| ^

| |

Client Payment data

| |

| |

--------> Payment -----> Visa/MC

service

|

v

[Credit card #s]

Figure 8: Online vendors often
use a separate payment pro-
cessor that handles the user’s
credit-card data.

	Example: Logging
	Example: Cryptography Keys
	Example: Media Codecs in Web Browsers
	Example: Server for Network Time Protocol (NTP)
	Example: OpenSSH Server
	Example: Web applications
	Example: Web client
	Example: Web browser
	Example: Payment Systems

