
Bug Finding
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

We are going to continue our treatment of security and bugs with
a discussion of how to find bugs. As we already have seen, bugs
are a big deal in terms of security problems. We have discussed
how to architect a system using privilege separation so that bugs do
not matter so much. But even with a very good privilege-separated
design, we still want to make sure that our system is as bug-free as
possible.

The topic of this chapter is then: How do we find bugs?

Step 1: Define what is a bug. Before we even begin talking about how
to find bugs, we need to answer the question: What is a bug? There
are a number of application-independent ways to determine when we
have hit a bug:

• the program crashes,

• the program makes an out-of-bounds memory access, or

• the program jumps to an unknown or undefined point in the
program.

More difficult types of bug to detect are ones that we can only detect
with knowledge of what the application is supposed to do:

• the program’s output is incorrect, or

• the program allows an attacker to access data it should not be able
to access.

Step 2: Find bugs. To find a bug, we just need to identify a possible
execution of the program that leads to one of the buggy outcomes we
defined in Step 1. The reason this is difficult is:

• there are typically exponentially many possible inputs to the
program and it may be difficult to find one the triggers the bug,

• concurrent systems exhibit non-deterministic behavior, and

• inputs from the environment (time, network state, etc.) can change
the behavior of the program.

bug finding 2

1 Bug finding: A concrete example

To frame our discussion of bugs, we will consider one specific exam-
ple of a C program that parses a binary packet that has the format
depicted in Fig. 1. The packet starts with a header byte and a length

--

| header | len | id | id | id | ... | id |

--

Figure 1: An example packet
format.

byte and then has a list of IDs.

1 // Parse header

2 char in[64];

3 int hdr = in[0];

4 if (hdr != s) returnl;

5 int n = in[1];

6 if (n > 64) return;

7

8 // Read ID fields

9 int ctr[32];

10 char *next = &in[2];

11 for (int i=0; i < n; i++) {

12 ctr[*next]++;

13 next++;

14 }

Figure 2: An example of some
buggy parsing code.

2 Manual testing

When we manually test code, we consider a specific execution of
the program and predefine an expected result. For the example of
Fig. 2, we might tests to check that the following two inputs give the
following behavior:

in = {6}; // Should have no effect.

in = {5, 1, 2}; // Should cause ctr[2] == 1

Benefits. The main advantage of manual testing is that tests can be
targeted and can exercise application-specific logic. If you have a
precise correctness condition that your program should ensure, it is
often easiest to test it with manual testing.

bug finding 3

An additional advantage is that manual tests are useful in regres-
sion testing: If you find a bug in your program today, you can write
a manual test that tests that the buggy condition does not occur. As
you update your program later on, this regression test can determine
whether the same bug occurs again.

Downsides. The downsides of manual tests are that they are expen-
sive to write, the test cases can themselves be buggy (especially when
the program is complicated), it requires a lot of program-specific un-
derstanding, and it is difficult to write enough tests to cover a large
fraction of the program’s behavior.

3 Fuzzing

Fuzzing is the process of running a program on a very large number
of randomly generated inputs. As soon as a random input causes the
program to crash, we know that we have detected a bug.

When using a fuzzer to test a piece of code, we will typically ask
the compiler to instrument the code with extra instructions to test
whether the code behaved improperly. In C, for example, we will With the GCC compiler, you

can compile your code with the
-fsanitize=address flag to insert
extra checks for memory-access errors.

instruct the compiler to check for out-of-bounds memory accesses.
To test for application bugs with a fuzzer, we can instrument our

code with assertions that will crash the program if the program ever
violates certain programmer-specified invariants.

Fuzzers may have to test a large number of inputs before finding
one that triggers a bug. In the code of Fig. 2, if a well-formed packet
has n=64, the program will write off the end of the in array. (The
check in Line 6 should test whether n >= 64 instead of n > 64.) For a
fuzzer to hit this bug, it will need to choose a random input value of
the form:

in = {5, 64, ... 64 arbitrary values ...};

The probability that a uniform randomly bitstring of the appropri-
ate length hits this bug is 2−8 · 2−8 = 2−16, which is quite small.

Coverage-guided fuzzing. Real fuzzers do not just feed uniform
random bitstrings to programs that they are trying to fuzz. Instead, Most random bitstrings will probably

not cause the program to exercise a
large fraction of the program’s code,
since the program will reject them early
most of the time.

real fuzzers try to pick inputs in a way that maximizes the fuzzer’s
code coverage: the fraction of the lines of the program’s code that the
fuzzed programs have executed.

To implement this strategy, the fuzzer maintains a corpus of
bitstrings. Each time the fuzzer runs the program, it picks an input
from the corpus and randomly mutates it in some way (e.g., by
changing or adding a byte). If running the new string on the program

bug finding 4

causes the program to execute some new lines of code (i.e., the
coverage increases), the fuzzer adds the newly mutated string to the
corpus.

While this strategy does not have a robust theory to support it,
coverage-guided fuzzing works shockingly well in practice. Many
major software projects use fuzzing extensively to find bugs.

A coverage-guided fuzzer run on Fig. 2 might find the following
input that causes the program to crash with an out-of-bounds write:

in = {5, 1, 100};

Benefits. A major benefit of fuzzers is that they are almost com-
pletely automated—they require very little input from the program-
mer. Since programmer time is more expensive than machine time,
finding bugs using fuzzers is often much cheaper than finding bugs
via manual test cases. Since fuzzers execute the program on billions
of inputs, they will often find tricky bugs that a human might never
find.

Drawbacks. A drawback of fuzzers is that they cannot find application-
specific bugs: they are essentially limited to only finding violated
assertions in a program. So while fuzzers are a useful tool for finding
bugs, they are typically only useful in conjunction with manual tests.

Generalizations of fuzzing. The first fuzzers used random bitstrings
as their initial pool of inputs. More recent fuzzers have application-
specific logic for handling HTML, JSON, or other file formats—these
fuzzers are better at catching higher-level logic errors. Some lan-
guages, such as Go, have support for fuzzing in their test infrastruc-
ture.

4 Symbolic execution

A weakness of fuzzing is that a fuzzer may not be able to trigger
bugs that hide behind if conditions that are very very rarely true. For example, if a parser first checks a

CRC32 checksum on a packet, a fuzzer
will almost never find an input that
causes the program to run past the
checksum check. Another example of
difficult-to-fuzz code might be some
HTML parsing code that checks that
every < symbol is followed by an >

symbol.

Symbolic execution is a testing strategy that can find bugs in these
difficult-to-fuzz programs.

The idea of symbolic execution is that we will run the program.
But instead of running the program on actual concrete input values,
we will run the program on symbolic variables that represent arbitrary
values. For example, we might want to use symbolic execution to run
the following simple snippet of code:

c = a + b;

e = d + c;

bug finding 5

f = a * d;

When executing this code, the state of memory might look like
this, where we replace the value of the variable d with a variable X:

--

... | 5 | 7 | 12 | X | | | ...

--

a b c d e f

The major headache when using symbolic execution is control flow.
For example, we might have code that looks like this:

if (e == f) {

BUG();

} else {

// Something else

}

If running with the symbolic variable d = X, then we will have the
condition: (d+c == a*d), which simplifies to: (X+12 == 5*X). An important thing to know is that

there is no guarantee that a SAT solver
will actually be able to find an input
that causes the program to execute
one branch or another. The reason is
that we know of no efficient algorithm
for finding an assignment of the
variables for an arbitrary condition that
causes the condition to be true. (This
problem is NP complete.) At the same
time, for finding branch conditions
in “reasonable” programs, SAT solves
work surprisingly well.

To handle this sort of case, we can use a program called a SAT
Solver to search for inputs that cause the condition to be true. For
example, a SAT solver run on the branch condition (X+12 == 5*X)

will likely find the value X==3 that causes the condition to be true.
Then the symbolic-execution engine can continue executing the
program down the true branch of the program with the constraint
X==3 on the symbolic variable X. In parallel, the engine can search
for values of X that cause the program to go down the false branch
of the program. A SAT solver might find X==908234 as one input that
causes the program to traverse the false branch.

Running a symbolic-execution engine on the code of Fig. 2 might
produce the following output:

ERROR: buggy.c:10 memory error

ERROR: buggy.c:12 memory error

The symbolic-execution engine may consider the following tree of
program executions, branching on each condition:

// Input data

in = {i0, i1, i2, i3, i4, ...};

[i0 == 5]

/

| FALSE -> return

| TRUE -> [i1 > 64]

\ /

bug finding 6

| TRUE -> return

| FALSE -> [0 < i1]

\ /

| FALSE -> return

| TRUE -> [i2 < 0 || i2 >= 32]

\ /

| TRUE -> BUG!

| FALSE -> [1 < i1]

\ /

| ...continue ...

| ...execution...

\

Benefits. Symbolic execution can find tricky bugs involving com-
plicated branch conditions that fuzzers and manual tests may not
find. In addition, symbolic execution may be able to find bugs that
do not crash the program. In addition, a symbolic-execution engine
can in principle consider all possible inputs to a program and can
give a guarantee that the program has no bugs of a certain type (e.g.,
out-of-bounds read).

Drawbacks. Symbolic-execution engines can be very slow to run and
often work poorly on very large pieces of code. As the length of an
execution grows, the symbolic-execution engine accumulates more To address these drawbacks in sym-

bolic executions, one approach is to
write a scheduler that guides the search
that the symbolic execution makes
through the program state. A second
approach is to define loop invariants or
function invariants that aim simplify the
job that the SAT-solver must perform
by giving it more information about the
program’s expected behavior.

and more symbolic variables (representing values in memory) and
the number of constraints on each symbolic variables grows as well.
When there are many variables and many constraints, the SAT solver
may not be able to determine—in a reasonable amount of time—
whether there is or is not a satisfying assignment to the variables. For
these reasons, symbolic execution can work well for small snippets of
code; in large programs (such as a web browser), symbolic execution
may not be able to progress very deep into the program.

	Bug finding: A concrete example
	Manual testing
	Fuzzing
	Symbolic execution

