
Runtime Defenses
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

We have considered a number of ways to improve software security.
First, we explored privilege separation as a way to architect a system
so that bugs do not lead to catastrophic security failures. Next, we
looked at bug finding—techniques to find and eliminate bugs in
source code before we use the code in production. Now, we will
discuss runtime defenses: how to detect buggy behavior as it occurs in
a piece of production software so that we can halt the program when
a bug occurs.

There are a number of reasons why it is difficult to build runtime
defenses. We must:

• determine the classes of bugs that we want to find,

• identify which components of the system that we want to monitor,

• figure out how to avoid false positives (erroneously halting a pro-
gram when there is no bug), and

• try to implement these runtime defenses with minimal overhead,
since we will apply these defenses to production code.

1 Defenses against buffer overflows

We have discussed the pervasive buffer overflow attack, which takes
advantage of a missing bounds check to overwrite memory beyond
the bounds of an array, often modifying the current function’s return
address to cause the attacked system to run attacker-specified code
which is placed in the buffer itself.

An example of C code that is vulnerable to a buffer-overflow
attack is this:

1 void f() {

2 char buf[128];

3 gets(buf);

4 }

The call-stack layout for this program will look like this:

| |

|-----------------|

| Return address |

|-----------------|

runtime defenses 2

| buf[127] |

| |

| buf[1] |

| buf[0] |

|-----------------|

| |

| |

| |

|-----------------|

The gets function in C will read from stdin until it finds a NULL
(\0) character in the input string. If the string has length > 127, the
gets function could copy adversarially generated input byte onto the
stack, overwriting the return address of the function f.

There are three steps involved in executing a buffer-overflow
attack:

1. write past the end of a buffer,

2. cause the victim process to jump to an adversary-controlled ad-
dress, and

3. cause the victim process to run adversarial code.

Runtime defenses against buffer overflows can try to disrupt each
of these three steps.

1.1 Non-Executable Stack

A first defense against buffer-overflow attacks is to prevent the CPU
from executing code on the C call stack. In traditional buffer-overflow
attacks, an attacker will somehow place some adversarial code on the
stack (e.g., in the buffer buf in the example above) and then cause the
victim process to jump to that code on the stack.

However, C usually puts normal program code in a separate
region of memory—not on the stack. Modern CPUs allow us to
add permissions to different memory regions: the OS can mark
each region as read (R), write (W), and/or execute (X). To make
buffer-overflow attacks more difficult, we can prevent the CPU from
running code from the stack at all by marking the stack as RW only. This is sometimes called an NX

defense—for “no execute.”Marking the stack as non-executable seems to eliminate a major
piece of an effective buffer overflow attack: the attacker can no longer
supply code of their choice and point to it with the return address.
However, modern attackers have worked around this with something
called return-oriented programming: with the ability to supply their
own code removed, attackers must find code that already exists to do
what they like. This may be full existing functions, but more likely

runtime defenses 3

attackers will set the return address to point into the middle of some
function and execute just a fragment that does something useful. It
turns out that with more work, it is possible to perform many attacks
using only code that already exists in a victim process.

1.2 Stack Canary

To try to remove the adversary’s ability to overwrite the return
address in the presence of a buffer overflow, another defense is
to insert a stack canary in every stack frame between the function
variables and the return address. A stack canary is typically a secret
random value, chosen when the program starts running. A buffer-overflow attack does not

directly allow the attacker to read
arbitrary memory, so the attacker has
no direct way to read the canary before
overflowing the buffer.

A clever non-random canary includes
a collection of the string-terminating
characters, such as
0

n

r. Many C functions that read strings
from input, such as gets will stop
reading once they reach one of these
values, so it could be difficult for an
attacker to feed in an overflowing string
that includes these characters.

At the start of each function, the compiler inserts instruction that
write this canary to some value. At the end of the function before
returning, the compiler also adds some code that checks that the
canary value has not changed. If the canary has changed, the attacker
must have overflowed a buffer and the program should exit to avoid
running unknown code.

| |

|-----------------|

| Return address |

|-----------------|

| Stack canary |

|-----------------|

| buf[127] |

| |

| buf[1] |

| buf[0] |

|-----------------|

| |

| |

| |

|-----------------|

This is effective because in a buffer-overflow scenario, the attacker
needs to write memory sequentially until the address they care about
writing is reached: if the canary is between the function variables
and the return address, the attacker must overwrite the canary to
modify the return address. However, this is not a perfect defense: if
the attacker writes the same value to the canary as was already there,
it will go undetected. Therefore, the canary value must be hard for
the attacker to guess.

This defense is still not perfect—for example, it does not prevent
an attacker from overwriting function pointers. However, it does

runtime defenses 4

make a successful attack significantly harder.
There are a few ways to subvert canaries:

• An attacker can corrupt data on the stack, even if it does not cor-
rupt the return address. This could be very bad for the program’s
behavior.

• An attacker might find a way to read the canary from memory
(e.g., if there is some other bug in the program) and then execute
the traditional buffer-overflow attack to overwrite the return
pointer.

• In a forking web server, the child process may have the same
canary value as the parent process. An attacker can potentially
exploit this to learn the canary (See Andrea Bittau et al. “Hacking
blind”. In: IEEE Symposium on Security and Privacy. IEEE. 2014,
pp. 227–242).

1.3 Address Space Layout Randomization (ASLR)

Another approach to defend against buffer overflow-style attacks
is to make it more difficult for the adversary to guess a useful ad-
dress to jump to. To do this, many modern systems randomize the
locations of code, stack, and heap memory regions when a process
starts. With this defense in place, an attacker needs to learn the loca-
tion of the code memory region in order to mount a return-oriented
programming attack (Section 1.1). Implementing ASLR requires compiler

support. Most modern compilers do.A weakness of ASLR schemes is that they typically shift the loca-
tion of an entire region of memory: the entire heap, stack, and code
sections move around in memory, but the layout within each section
is typically fixed at compile time. Thus if the adversary can learn the
location in memory of the code for a single function, it can mount an
effective return-oriented programming attack.

1.4 Bounds Checking with Fat Pointers

All of the defenses so far have attempted only to minimize the dam-
age of a buffer overflow after an attacker has exploited it. However,
we could prevent a more comprehensive suite of attacks if we could
make sure that our code never reads or writes a pointer that is out-
side the bounds of a given buffer. Memory-safe languages such as
Go, Rust, and Python have this bounds checking built in. For older
languages, such as C, we can try to retrofit the C compiler to achieve
this bounds checking. As we now discuss, implementing bounds
checking in C is challenging.

runtime defenses 5

One way to implement bounds checking in C is a technique called
fat pointers. When using fat pointers, the compiler changes the rep-
resentation of a pointer to include not only an address, but also
the base and the limit of the buffer the pointer points to. This base
and limit are initialized on an allocation, and the compiler inserts
bounds checks on each pointer dereference to guarantee that the
dereferenced value is within the array bounds that the base and limit
specify. Pointer arithmetic preserves the base and limit but modifies
the pointer itself as before, allowing the pointer to possibly go out of
bounds.

For example, if a programmer allocates an array of 128 bytes using
void* ptr = malloc(128), the compiler will associate values base

= ptr and limit = ptr+128 with the pointer ptr. If we then assign
ptr3 = ptr + 3, then the new pointer ptr3 will have the same base
and limit as ptr:

| |

limit --> |-----------------|

| buf[127] |

| |

| buf[4] |

ptr3 --> | buf[3] |

| buf[2] |

| buf[1] |

ptr,base --> | buf[0] |

|-----------------|

| |

| |

| |

|-----------------|

When the program deferences ptr3, the compiler will insert checks to
ensure that base ≤ ptr3 < limit and crash the program otherwise.

One limitation of fat pointers is that they only check overflow-
ing an allocated region of memory—not overflows within a region of
memory. For example, if we use malloc to allocate a C struct, over-
flowing the buf member of the struct could allow the attacker to
overwrite the values of other elements of the struct:

struct {

int x;

char buf[16];

void (*f)();

}

If there are function pointers in the struct, the result of this within-
region overflow could be as bad as overflowing the return address.

runtime defenses 6

Unlike a nonexecutable stack, stack canaries, and ASLR, fat point-
ers are not widely used. This is largely because the modified “fat”
pointers can break the functionality of existing C code. In particular,
a fat pointer on a 64-bit architecture will typically take more than
64 bits to represent. If the programmer cast a pointer to an int and
back again, the behavior of the program could change when using fat
pointers versus when using unmodified 64-bit pointers. In addition,
a C program may implicitly require that a pointer takes exactly 64

bits to represent (e.g., as a field within a struct); a compiler using fat
pointers will break such programs.

1.5 Control-Flow Integrity (CFI)

The goal of techniques for control-flow integrity is to limit the set of
addresses that a program will jump to when returning. In this way,
a victim process may be able to detect when it is about to jump to a
return address that an adversary modified with a buffer overflow. Im-
plementing CFI requires compiler support—many modern compilers
support some form of CFI.

To implement CFI, we need to add several checks on different
kinds of jumps.

• For direct jumps (e.g,. “call gets”, we know at compile time that
these jumps are valid since there is nothing that the attacker can
control. There is no need to implement any CFI checks on these
jumps.

• For indirect jumps that use some variable in the jump target
(e.g., function pointers, function returns), the compiler inserts
checks to insure that the return address is a valid jump target. To
do this, the compiler inserts into the program a data structure
that maintains a set of all valid indirect-jump targets. Checking Often a compiler will implement this

data structure using some sort of simple
Bloom filter.

whether a jump point is valid takes a bit of extra computation—
and thus imposes some runtime cost—it may tolerable in practice.

1.6 Unsolved program: Use-after-free bugs

The defenses in this section have made buffer overflows extremely
challenging to exploit in modern code on modern systems. These
defenses do very little to prevent against use-after-free bugs, in which
a program frees allocated memory and then inadvertently reads or
writes the freed pointer.

runtime defenses 7

2 Taint Tracking to Defend against Input-Sanitization Bugs

We have discussed SQL injection and cross-site scripting, which allow
an attacker to run code by adding special characters, such as “"” or
“>,” into their input.

Unlike buffer-overflow bugs, input-sanitization bugs arise not
because a bug at one particular point in the program—they are more
due to a systematic failure to consider certain types of inputs. As a
result, the defenses are more systematic as well.

2.1 Taint tracking in libraries

A common approach to check for sanitization failures at runtime
is called taint tracking. In taint tracking, some infrastructure in the
program (e.g., a SQL library) marks any data coming from user input
as tainted. At functions that perform escaping, the infrastructure
removes the taint label. The infrastructure marks sensitive functions,
such as the HTML renderer, are marked as sinks. Any time the pro-
gram runs sink code, the taint-tracking infrastructure checks that the
data headed into the sink is not tainted. If the data is tainted, some
part of the input must not have been sanitized since it came from the
user, and the infrastructure will halt the program to avoid an exploit.
See Fig. 1 for an example.

name = read_from_user() # name is tainted

first,last = name.split() # first,last are tained

query is tainted

query = "SELECT * FROM USERS WHERE last_name = ’" + last "’"

query_database(query) # will cause an exception

qesc = escape(query) # qesc is not tainted

query_database(qesc) # will succeed

Figure 1: A hypothetical Python
example of how taint-tracking
might prevent SQL injection

Many browsers implement taint tracking to prevent cross-site
scripting using Trusted Types: for JavaScript calls that update the
displayed HTML, such as innerHTML = foo, browsers may restrict
the type of foo to ensure that the code explicity converts its type
to something like TrustedHTML. This does not guarantee that the
sanitization was done correctly, but does ensure that the programmer
acknowledged the risk in their code.

runtime defenses 8

2.2 Taint tracking in language runtimes

Some programming languages associate a taint bit with every string
in the program. The application developer can set or clear the taint
bit manually. In addition, the language runtime will automatically
set the taint bit on strings that certain functions (e.g., those that
read from user input) return. An application developer then can
implement some taint-checking policy to systematically prevent
against escaping bugs. For example, if there is one function that
makes a SQL query to the database, the application could check the
taint bit is cleared on any query string that a developer passes to this
function.

2.3 Taint tracking in operating systems

Operating systems also use taint tracking, often to flag suspicious
files—typically those that the user downloaded from the Internet.
MacOS, for example, will set a taint bit on any executable that the
user downloaded from the Internet. The OS will maintain this taint
bit when the user copies or moves a tainted file. If the user ever tries
to execute a tainted file, the OS will raise a warning to the user before
executing it.

References

Bittau, Andrea et al. “Hacking blind”. In: IEEE Symposium on Security
and Privacy. IEEE. 2014, pp. 227–242.

	Defenses against buffer overflows
	Taint Tracking to Defend against Input-Sanitization Bugs

