
Privacy and zero-knowledge proofs
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have discussed several cryptography primitives, from hash
functions to encryption schemes, and explored many applications
of those primitives to systems security. These primitives have pro-
vided security, but in a very all-or-nothing sense: in order to provide
broadly applicable security, our definitions required that a certain
party (with the key) could either completely decrypt the message,
learning the message contents, or cannot do anything with the mes-
sage at all.

1 Zero-knowledge proofs of knowledge

Zero-knowledge proofs allow one party (called a prover) to convince
another party (called a verifier) that the prover “knows” some secret,
without revealing anything else about the secret. More formally,
say that both parties hold a function f , and a value y = f (x). The
prover may want to convince the verifier that it “knows” an x such
that y = f (x). We call such a prover-verifier interaction a proof
system. If the prover reveals no information about x, apart from the
fact that y = f (x), to the verifier, we say that the proof system is a
zero-knowledge proof of knowledge.

The proof takes the form of an interaction between the prover
and the verifier, in which the two parties exchange a sequence of
messages. At the end of the interaction, the verifier either accepts
the proof or rejects it. This is an interactive proof : the prover and
verifier may exchange many messages. In contrast, in a classical (non-
interactive) proof, the prover writes down a proof and sends it to the Probably all of the proofs you have

seen in your life up until this point,
including the ones in your math
textbooks, are classical proofs.

verifier in a single message.
In our example, both parties hold a function f and a value y. The

prover wants to convince the verifier that it knows a value x such
that y = f (x). To be a zero-knowledge proof of knowledge, the proof The literature usually refers to the

secret value x as the witness.system must have three properties. We state this informally:

• Completeness. If the prover “knows” x, it will always convince an
honest verifier to accept.

• Soundness. If the verifier accepts the proof, then prover must really
“know” x. The soundness property is about protecting an honest
verifier from a cheating prover: if the prover does not know x, then
no matter how it cheats it will not be able to convince the verifier
that it does.



privacy and zero-knowledge proofs 2

• Zero-knowledge. The verifier “learns nothing” about x, apart from
the fact that y = f (x), as a result of interacting with the prover.
The zero-knowledge property is about protecting the prover from
a malicious verifier: if the prover is honest, then no matter how
the verifier misbehaves, it should learn nothing about the prover’s
secret witness x.

TODO: HCG: Insert formal definitions here?

One important question here is: How do we define the notion
of knowledge? That is, what does it mean for the prover to really
“know” x? A naïve definition might say that x is stored somewhere
in the prover’s memory, but that might be too strong: a prover might
“know” x without storing it literally in its memory, perhaps storing
it in base64-encoded form. A more meaningful definition of knowl-
edge, which is the one we will use, thinks of knowledge in terms
of extractability. That is, we say that a prover knows x if there is an
efficient algorithm that extracts x by interacting with the prover and
observing the prover’s internal state.

We also must pin down what it means for the verifier to learn
nothing through an interaction with the prover. A good way to define
this, it turns out, is to think of “learning nothing” in terms of the
verifier being able to simulate its interaction with the prover without
actually talking to the real prover. Specifically, if the verifier can
produce a transcript of its hypothetical interaction with the prover—
that is cryptographically indistinguishable from a real transcript—
without actually communicating with the prover, we say the verifier
has learned nothing about x. There is a rich theory of zero-

knowledge proof systems that we
will not be able to cover here. One
surprising fact is that there exist zero-
knowledge proofs of knowledge for
any choice of the public function f ,
provided that it is an efficiently com-
putable function.

One immediate application of zero-knowledge proofs of knowl-
edge is to authentication. The prover’s witness x becomes the user’s
secret key, the verifier’s y is the user’s public key, and the function
f is a public parameter of the authentication scheme. The authen-
tication protocols we’ve seen so far, such as challenge-response
protocols using MACs or signatures, do not quite satisfy the notions
of soundness and zero-knowledge we use here. For example, in a
MAC-based challenge-response protocol, the server learns the MAC
of a server-chosen challenge value under the client’s (prover’s) secret
key. Provided that the MAC is secure, the verifier could not produce
a simulated transcript that is identical to a real one without actually
interacting with the real prover.

2 Discrete-log problem and Schnorr signatures

As an example of a zero-knowledge proof of knowledge, we will
show how a prover can convince a verifier that it knows a discrete



privacy and zero-knowledge proofs 3

log, without revealing it.

3 Reminder: The discrete-log problem

We recall the discrete-log problem. The problem is parameterized
by a group G of prime order q, generated by a value g ∈ G. Then, In cryptographic settings, q is a big

prime.given a group element y = gx ∈ G, for x ←R Zq, the discrete-log
problem is to find the value of x ∈ Zq. We have already seen the
discrete-log problem in the context of Diffie-Hellman key exchange
and elliptic-curve signatures.

4 Schnorr’s protocol for proving knowledge of discrete logs

In Schnorr’s protocol, the prover and verifier both hold the generator
g ∈ G and the group order q. In addition the prover holds a secret
value x ∈ Zq, the verifier holds a public value y ∈ G. The prover
must convince the verifier that it knows the discrete log of y base g:
that is, that it knows x such that y = gx ∈ G. The prover wants to
prove this to the verifier this without revealing anything about else
about its secret value x.

The protocol goes as follows:

• The prover picks a random r ∈ Zq, and sends R = gr ∈ G to the
verifier.

• The verifier picks a challenge bit c at random, either 0 or 1, and
sends the challenge to the prover.

• The prover sends back a response z ∈ Zq, chosen as follows: In the true Schnorr protocol, the verifier
samples c ←R Zq, as we discuss in
Section 6– If c = 0, the prover sets z← r ∈ Zq.

– If c = 1, the prover sets z← r + x ∈ Zq.

Mathematically, z = r + cx ∈ Zq.

• The verifier checks that gz = Ryc ∈ G. If equal, the verifier accepts,
otherwise the verifier rejects.

Why is interaction necessary here? It turns out that this protocol
critically depends on the prover not knowing the challenge bit c
in advance. If the prover knew c in advance, the prover could pick
z←R Zq at random, and just compute R as (gz)(yc)−1 ∈ G.

Reducing soundness error. In any given interaction of the protocol,
the prover could falsely convince the verifier that it knows x, using
the attack we just described. The prover only will succeed in this
attack with probability 1

2 , which is exactly the probability that the



privacy and zero-knowledge proofs 4

prover guesses the verifier’s challenge c in advance. By repeating
this protocol λ times and accepting only if all λ iterations accept,
the verifier can reduce the probability of accepting a cheating prover
(called the “soundness error”) to 2−λ.

A more efficient way to reduce the soundness error is to have the
verifier sample the challenge value c ←R Zq as a random Zq element
instead of a random bit. With this transformation, the soundness
error becomes roughly 1/q, which is ≈ 2−256 for the cryptographic
groups we use in practice. An important caveat is that if we increase
the challenge space in this way, we cannot prove that the resulting
protocol is zero knowledge. This modified protocol only satisfies a
weaker flavor of zero knowledge called “honest-verifier zero knowl-
edge.” We won’t discuss those details here.

5 Analysis of Schnorr’s protocol

We will now argue that Schnorr’s protocol is really a zero-knowledge
proof of knowledge of discrete log. To do this, we must show that the
protocol satisfies completeness, soundness, and zero knowledge, as
we defined them in Section 1.

The completeness follows by construction. The more challenging
steps are proving soundness and zero knowledge.

5.1 Soundness using an extractor

We first need to convince ourselves that the protocol is sound: that
is, if the verifier accepts, the prover really knows x. We can prove
soundness by showing that, if there is a (possibly adversarial) prover
P∗ that can convince our honest verifier to accept, there exists an
efficient extractor that can use the cheating prover P∗ to extract x
with some high probability (say,≫ 1/2).

For simplicity, assume here that the prover P∗ manages to con-
vince the verifier to accept with probability 1—i.e., for all choices of
the verifier’s challenge bit c and all choices of the prover’s random-
ness. Then, given a prover algorithm P∗, the extractor for Schnorr’s
protocol works as follows:

• The extractor runs the prover P∗ to get some initial protocol tran-
script with challenge c = 0. The transcript consists of (R, c = 0, z).

• The extractor rewinds the state of the prover P∗ to just after the
point when it sent the first protocol message R to the verifier.

• The extractor runs P∗ again, but this time feeds its the challenge
c = 1. This produces a second transcript (R, c = 1, z′).



privacy and zero-knowledge proofs 5

• The extractor outputs z′ − z as the discrete log x.

By our assumption—namely, that P∗ can convince our honest
verifier to accept with probability one—both runs of the prover P∗

by the extractor must convince the verifier to accept. (Otherwise, the
prover P∗ would not convince the verifier in at least one of the two
runs of the protocol.) That means that both gz = R ∈ G and that
gz′ = RX ∈ G. Thus, gz′−z = y ∈ G, which is exactly the definition of
what it means for something (z′ − z in particular) to be the discrete log
of y ∈ G.

Here we have glossed over the details of what happens if the
prover convinces the verifier with some non-negligible probability
that is nonetheless less than 1. A similar but more involved argument
handles that case.

5.2 Zero-knowledge using a simulator

Our second task is to show that Schnorr’s protocol satisfies zero
knowledge. That is, that even a malicious verifier V∗ that deviates
from the protocol “learns nothing” about the prover’s witness x
as a result of interacting with the prover in the Schnorr protocol.
To do this, given a malicious verifier algorithm V∗, we construct a
simulator algorithm. The simulator’s job is to produce a transcript of
the prover-verifier interaction that is indistinguishable from a true
prover-verifier interaction. Crucially, in the simulated interaction, the
simulator does not know the witness x, while in the real prover-verifier
interaction, the prover does know the witness x.

Given the verifier V∗, we construct this simulator as follows:

• Make a guess c′ ←R {0, 1} of the verifier’s challenge bit.

• Choose the third protocol message z←R Zq at random.

• Set the first message to R← gzy−c′ ∈ G.

• Run the verifier V∗ on first message R. The verifier outputs a
challenge c.

• If c = c′, output (R, c, z) as the simulated transcript. This happens
with probability 1/2.

• Otherwise, retry. This happens with probability 1/2 as well.

Both the extractor and simulator constructions rely crucially on
being able to rewind the prover or verifier and try again. In a real
prover-verifier interaction, the verifier cannot rewind the prover and
the prover cannot rewind the verifier. This is why the existence of an
extractor does not mean that in a real protocol interaction the verifier
can extract the witness x from the prover.



privacy and zero-knowledge proofs 6

6 Fiat-Shamir heuristic and Schnorr signatures

One challenge with Schnorr’s protocol as we have presented it,
and zero-knowledge proof systems more generally, is that they are
interactive. They require the prover and verifier to send messages
back and forth. A clever trick, called the Fiat-Shamir heuristic, allows
us to turn interactive zero-knowledge proofs into non-interactive
proofs, provided that

• we use a cryptographic hash function that we model as a random
oracle, and

• the verifier only sends the prover independent random values. In Schnorr’s protocol, the verifier’s
challenge is just a random bit, so it
satisfies this second property.The idea is that, whenever the protocol expects the verifier to send a

challenge to the prover, we can instead derive the challenge just as
a hash of the protocol transcript so far. The prover can then execute
the zero-knowledge protocol against a synthetic verifier (the hash
function), and produce a transcript. The prover can now send this
transcript to the verifier, and if the verifier can confirm that indeed
all of the challenges were correctly computed using a cryptographic
hash function, such as SHA-256, it’s sound to accept this transcript as
a proof.

We can use this Fiat-Shamir heuristic to construct a (regular, non-
interactive) signature scheme from an (interactive) zero-knowledge
proof of knowledge for the discrete-log problem. The elliptic-curve
signatures used in practice today effectively take the Schnorr protocol
for proof of knowledge of discrete log using challenge space Zq, and
apply the Fiat-Shamir heuristic to it. The resulting signature scheme
is called the Schnorr signature scheme.


	Zero-knowledge proofs of knowledge
	Discrete-log problem and Schnorr signatures
	Reminder: The discrete-log problem
	Schnorr's protocol for proving knowledge of discrete logs
	Analysis of Schnorr's protocol
	Fiat-Shamir heuristic and Schnorr signatures

