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In many of the systems we have seen so far—encryption, iOS security,
etc—we try to prevent an adversary from learning any information
about our sensitive data. Today we will be talking about how to deal
with situations in which we want to leak some information about
sensitive user data, but we want to do it in a “privacy-preserving”
way.

For example:

• the U.S. Census collects sensitive demographic information about
U.S. citizens and then publishes aggregate statistics about it,

• Internet Service Providers may want to publish aggregate statistics
about network traffic,

• Google may want to publish anonymized data about user search
queries, or

• public-health officials may want to publish metrics about a pop-
ulation’s health at large without revealing any individual user’s
health status.

In each of these settings, we many n users, where each user i has
some data xi. There is a central party that has collected (x1, . . . , xn) The techniques we describe here also

apply when there is only a single user
and the user wants to publish some
function about their private data.

and wants to publish an aggregate statistic f (x1, . . . , xn) in a way that
“protects the privacy” of each user’s data.

user x_1 -----

|

user x_2 -----

|

... ...

| Publish

user x_n ---------> Database ---> f(x_1, ..., x_n)

Q1. What functions of private data can we publish without compro-
mising user privacy? How do we even define “privacy” in this
context?

Q2. Once we have a definition of privacy, how do we achieve it in
practice?

Differential privacy gives us one possible answer to the question Q1

here—it is a definition of privacy that has an number of appealing
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properties. For reasons we will discuss, it is not a perfect definition of
privacy, but it is essentially the best one we have.

Once we buy the privacy definition that differential privacy gives
us, there is a rich literature that explains mechanisms for achieving
differential privacy (i.e., the answer to question Q2).

1 A bad idea: Attempt to anonymize the data

A common bad strategy for attempting to release data with privacy
protections is to try to anonymize the data. For example, if a hospital
wants to release medical-records data, they could publish the records
with the names redacted. One surprise—that has bitten many compa-
nies and governments—is that it is shockingly easy to re-identify data
in datasets that are supposedly anonymized.

Example: Re-identification by Linking (Sweeney 1997) For example, in
Massachusetts, the Group Insurance Commission released a dataset
that they believed to be anonymized. This dataset contained health
data, including patient ethnicity, ZIP code, birth date, sex, date of
visit, diagnosis, procedure, and medication given.

In 1997, Latanya Sweeney demonstrated that this anonymization
strategy completely failed. In particular, she purchased (for $20!) the
public voter-registration data from the government of Cambridge,
MA. This second dataset included voter name, address, ZIP code,
birth date, and gender. Crucially, this other database included each
voter’s zip code, birth date, and gender! Using the voter-registration
dataset—which linked names to zip codes and birth dates—and the
medical data set—which linked zip codes and birth dates to medical
conditions—Sweeney was able to determine which people had which
medical conditions. That is, Sweeney was able to completely de-
anonymize the GIC dataset and reveal private medical information
for everyone up to the governor of Massachusetts.

Netflix Competition In 2006, Netflix aimed to improve their movie
recommendation system. To do this, they planned to have researchers
compete to come up with the best movie-recommendation algorithms.
For the purposes of running the competition, Netflix published a
supposedly anonymized dataset that included a randomized user id,
movie id, rating, and date. Netflix released a portion of the dataset,
and the research group that could produce a model that best pre-
dicted ratings for the unreleased set of movies would win a million
dollars.

One group of researchers was able to link individual records in
the Netflix database to records from the public IMDb database. This
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allowed them to de-anonymize the data from Netflix even though the
database contained no identifying information whatsoever!

The bottom line. Anonymizing data sets simply does not work.

2 A flawed idea: k-Anonymity

The k-anonymity approach to privacy is to think of a dataset release
as being sufficiently private if there are at least k users’ data in the
dataset that are identical. For example, if there are k = 10 people in
a medical-records database with the same birth date, zip code, and
medical condition, we might be okay with publishing the dataset
with those three fields only when there are at least k = 10 users
whose medical records are identical on those three fields.

The flawed intuition here is that even if there is still some leakage,
maybe it is not so bad. For example, even if you can link the voter-
registration database to the medical-records database, you might
hope that it will be difficult to figure out exactly which user has
exactly which medical condition.

There are a few issues with the k-anonymity approach to privacy:

• It is not robust to side information. For example, if an attacker
knows a few people with a given medical condition, it can use a
process of elimination to de-anonymize the dataset still.

• The anonymized dataset may still leak some private information.
For example, say that every student in a class of 100 got the same
grade. The teacher might be happy publishing the grades of all
students (without names) since this release satisfies k = 100-
anonymity. The problem is that the anonymized release reveals the
grade of every student in the class—definitely not exactly what we
would expect from a privacy-preserving release.

3 A flawed idea: Publish only aggregate statistics

Another approach we might consider is to publish only summary
statistics with the aim that these summary statistics compress the
data so much that it is impossible to learn anything meaningful
about an individual from them. However, we have to be careful: even
a few statistics can reveal sensitive information.

For example, consider a company that released the average salary
of its employees regularly. If the company releases this average
before and after the resignation of one individual, anyone who
knows that that individual resigned can learn his salary.

So, releasing only statistics does not cleanly protect privacy either.
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4 A new definition: Differential privacy

Differential privacy is a very mathematically clean definition of
privacy that addresses many of the concerns of the flawed ideas
above. It is not perfect—for reasons we will see—but many regard it
as the best formal definition of privacy we have.

Say that (x1, . . . , xn) is a dataset of n users’ data. Differential pri-
vacy, roughly, says that a it is safe to release an algorithm A(x1, . . . , xn)—
called a mechanism in the language of differential privacy—applied
to the dataset if the value of the algorithm A’s output is roughly the
same if we release any user i’s data xi with some other data value x∗i :

A(x1, . . . , xn) ≈ A(x1, . . . , xi−1, x∗i , xi+1, . . . , xn).

In other words, dataset-release mechanism provides differential pri-
vacy if its output looks roughly the same, whether or not a particular
user’s data is included in the original dataset.

In picture form, the situation looks like this:

Dataset -----> A(Dataset)

| ^

Drop Alice’s data | | Should be "roughly equal"

v v

Dataset’ ----> A(Dataset’)

To formalize this, we will require that a pair of datasets that differ
in only a single row—that is, one contains a row and the other does
not—are close. The formal definition is as follows: Notice that a mechanism A that outputs

nothing trivially satisfies differential
privacy. For a mechanism to be useful,
it should add as little noise as possible
to maintain a given level of differential
privacy.

Definition 4.1 (ϵ-differential privacy). An mechanism A provides
ϵ-differentially private if, for all neighboring datasets x and x′ that
differ in only one row, for all subsets S of outputs of A:

Pr[A(x) ∈ S] ≤ eϵ · Pr[A(x′) ∈ S].

This is approximately saying that whether or not a given row is We have that eϵ ≈ 1 + ϵ when ϵ is very
small.included in the dataset, the probability of the output being detectably

different is less than ϵ.
In the differential-privacy literature, this
parameter ϵ is often called the “privacy
budget.”

Notice that the definition of differential privacy is parameterized
by a real number ϵ that specifies how close the two outputs of the
mechanism A must be on neighboring datasets. The smaller ϵ is, the One of the delicate points in practice

is figuring out what actual value of ϵ a
system should aim to achieve.

stronger the privacy guarantee is.
In order for a non-trivial mechanism to provide differential pri-

vacy, the algorithm must be randomized. Take our salary example
from before: if we want to reveal an average salary of all employ-
ees, achieving differential privacy requires adding noise in order to
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make sure that the output of the release algorithm looks roughly the
same whether or not a particular employee’s salary is included in the
computation.

Differential privacy is closed under post-processing. A really conve-
nient property of the differential-privacy view of privacy is that the
definition is closed under post processing. That is, if a mechanism A
is ϵ-differentially private, then for every function B, the composed
mechanism B(A(·)) is also ϵ-differentially private.

Differential privacy is composes nicely. In many applications, we want
to publish many functions of the same dataset. An very powerful
property of the definition of differential privacy is that it can nicely
handle this situation. In particular, say that a mechanism A1 is a
mechanism that satisfies ϵ1-differential privacy. Say that a mechanism
A2 is a mechanism that satisfies ϵ2-differential privacy. Then the There are more sophisticated composi-

tion theorems that give tighter bounds
on the differential privacy parameter
of the composed mechanism when
the number of mechanisms you are
composing is large.

mechanism B(x) = (A1(x)∥A2(x)) that publishes the output of both
mechanisms is (ϵ1 + ϵ2)-differentially private.

The value of ϵ increases with each statistic we publish—which
nicely captures our intuition that the more statistics you release about
a dataset, the more information you are leaking about it.

5 Achieving differential privacy: Adding noise

A common approach to achieving differential is exactly this: adding
random noise to the data in order to add uncertainty about the real
data. The first instance of this was by Warner in 1965, who proposed
using random noise to allow individuals to answer sensitive survey
questions (i.e., revealing some private data) while also giving them
some privacy protection. Warner’s approach is called randomized
response.

To give an example of randomized response: consider a professor
that wants to learn the fraction of students who cheated on a test.
Obviously no student wants to admit that they cheated on an exam.
Using Warner’s approach, the professor could ask students to answer
honestly with probably 2/3, but to lie with probability 1/3. This
allows a student who did cheat to claim that they were lying, as
per the directions. However, with many students, the noise should
average out, and the professor can still learn approximately how
many students cheated on the test.

We can apply this same approach if we want to make a certain
algorithm differentially private. Instead of publishing a dataset (or
a function of a dataset) directly, we can publish a noisy version of
it. Much of the technical complexity in differential privacy goes
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into trying to design exactly how to choose the noise in a way that
maintains as much of the “signal” of the underlying dataset as
possible.

6 The Laplace mechanism

The Laplace mechanism gives a very general way to take an aggregate
statistic f and modify it to have ϵ-differential privacy for any choice
of ϵ.

First, we need to define the global sensitivity of the function f . This
aims to capture the maximal change in f that results from changing
one of the function’s n inputs. Intuitively, the higher the sensitivity
of a function is, the more each user’s data can affect the functions
output and therefore the more noise we will have to add to achieve
differential privacy.

The definition of sensitivity and the
Laplace mechanism generalize nicely
to functions that output multiple real
numbers.

Definition 6.1 (Global Sensitivity). The global sensitivity of a function
f : Dn → R, for some domain D, is:

GS f = max
neighbors x,x′∈Dn

∥ f (x)− f (x′)∥.

Here, “neighbors” inputs in Dn that differ in only a single coordinate.

We will also need to define the zero-mean real-valued Laplace dis-
tribution, which is parameterized by a value b ∈ R. The probability
distribution function is:

h(y) =
1
2b

e−
|y|
b

Now, the Laplace mechanism for achieving a differential privacy
release of the function f (x1, . . . , xn) is:

1. Compute the true statistic y← f (x1, . . . , xn).

2. Let b← GS f
ϵ be the global sensitivity of f .

3. Sample a random noise value ν from the Laplace distribution with
mean 0 and parameter b.

4. Output the noised statistic y + b.

Handling non-numerical data. The Laplace mechanism gives a very
clean way to provide differential privacy for releasing real-valued
aggregate statistics about a dataset—where the aggregate statistic is
just a number. But in many applications, we need to publish strings,
such as names or zip codes or birth dates.

One way to handle strings is to convert them into numerical
statistics and them apply differential privacy. For example, we could
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publish (1) the number of users with name “Alice,” (2) the number
of users with name “Bob,” and so on. Then we are back to working
in a world of numerical statistics and we can against use the Laplace
mechanism.

7 Challenges with differential privacy

As we discussed in Section 4, the more statistics you publish about
a database, the larger the differential-privacy parameter ϵ grows. A
consequence is that if you want to publish many statistics about a
dataset, you will have to add a huge amount of noise to the statistics
you publish to achieve ϵ-differential privacy any reasonable value
of ϵ. This is a major headache in practice.

A second issue is that the designer of the system has to choose
what value of ϵ to use. What value is good enough? The theory of
differential privacy cannot tell you—it’s really a subjective question.

Yet a third issue is that in many applications, a company has to
publish an aggregate statistic every day or week. Since the ϵ values
“add up,” after a short amount of time the effective ϵ value can end
up being so large as to render the differential privacy guarantee
meaningless.
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