
Conclusions
6.1600 Course Staff

Fall 2023

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

To conclude, we will explore five case studies that exemplify what we
have covered so far.

1 Authentication: OPM Hack

In order to get security clearance to view classified documents, it is
necessary to fill out a form called an SF86 that covers all kinds of per-
sonal details from relationships and mental health to drug use and
finances—some of the most sensitive data there is. Many, many peo-
ple have filled these out—around 2.8 million people have some level
of current security clearance. The goal of this invasive background
check was to understand people’s exposure to blackmailing.

These records are stored in a database at the Office of Person-
nel Management. In 2015, the OPM announced that 20 million of
these records have been exposed. This was a big problem for the US
Government. Not only did it expose exactly how to blackmail every
person with security clearance, but also records of CIA employees
were not stored in this OPM database—this meant that if you knew
someone had a security clearance but they were not in the database,
you had an idea that they might be a CIA agent.

1.1 How it Happened

Learn Contractor Credentials. First, the attacker somehow got a
contractor’s credentials. This could have been through phishing or
some other means. The system did not use two-factor authentication,
and only around 1% of OPM users used smart cards. Importantly,
the contractor did not need to have many privileges on the system—
perhaps only enough permissions to log in.

Compromise Root Account. Then the attacker likely compromised the
root account on a local machine. Given that these systems were old,
this was likely easy—old version of Windows were not particularly
careful about protecting access to the root account. One way to
do this was by scheduling a job for the future. Windows allowed
unprivileged users to schedule jobs that would run as the system
user, so a command like at 16:05 /interactive "cmd.exe" would
open a command prompt as the system user at 4:05 PM.

conclusions 2

Learn Administrator Credentials. Even with access to the root account
on a local machine, the attacker needed to learn credentials to be able
to log into one of the machines with access to the database. Windows
did not store the password of the currently logged in user, but it
did store the hash of the password and uses that to authenticate to
the server. This means that the client does not need the cleartext
password to log in!

As we have covered many times, passwords are terrible for authen-
tication. Signatures, as used with standards like FIDO2/WebAuthn,
provide much stronger security and should be used whenever possi-
ble.

2 Transport Security: POODLE

TLS is used all over the web. Many servers, from data centers to
embedded hardware devices, like doorbells, implement TLS. Some of
these servers take a long time to upgrade, so even if a client supports
the latest version of TLS (e.g., TLS 1.3), it might be unable to use TLS
1.3 to communicate with some servers. To handle this situation, TLS
implements version negotiation; the client and server should agree to
use the most recent version of TLS supported by both sides. However,
the way this negotiation was implemented was subtly insecure.

When an old server receives a message from a new client speaking
a new version of TLS that the server does not support, the server
might reply back with garbage data. This could be due to a bug in
the server implementation, which was never found because the de-
velopers didn’t think in advance to test against various ways that
future clients sending messages from a future version of TLS. Despite
the fact that this is a server bug, users want to still be able to com-
municate with this device; after all, communicating with the device
worked fine before the client upgraded to support a new version of
TLS. As a result, clients that receive garbage data in response to their
TLS connection attempt will try to downgrade the version of TLS
that they use to connect in their next attempt. However, the “garbage”
that the client is reacting to was not authenticated. Therefore, an
adversary could inject garbage to force a client to downgrade to an
older TLS/SSL version.

Old versions of TLS/SSL have well-known weaknesses in their
cryptographic protocol. In particular, SSL 3.0 computed the MAC
of the message (for authentication) before encrypting the message
(MAC-then-encrypt), rather than the encrypt-then-MAC approach
that we discussed in the authenticated encryption lecture. This al-
lowed the attacker to send corrupted ciphertexts and see how the
client or server respond to them. In combination with MAC-then-

conclusions 3

encrypt, SSL 3.0 also used a particular encryption construction, called
cipher-block-chaining (CBC) mode, whereby changing bits in one
part of the ciphertext caused corresponding changes to another part
of the plaintext. Finally, the plaintext payload included padding,
constructed with a well-known scheme, which was checked after
decryption to make sure it was not corrupted; if the padding was cor-
rupted, the connection was terminated. However, this gives a signal
to the adversary as to whether their corrupted ciphertext happens to
match the expected padding or not. We saw the CBC padding oracle
attack earlier in the lecture on authenticated encryption.

The POODLE attack was a combination of these two weaknesses
(downgrade attack and CBC padding oracle), together with run-
ning adversary-supplied code in Javascript in the victim user’s web
browser, as a way of sending partially-adversary-chosen requests over
the TLS/SSL connection. The result is that the adversary can recover
other data sent to the server over the same connection, such as the
victim’s cookie.

3 Platform Security: Sony PS3 Hack

The Sony PS3 originally could boot Linux and Windows. Since
the hardware was subsidized by the games that they sold, PS3s
were cheaper than comparable PCs, and for that reason PS3s were a
popular option for a cheap PC. In a software update, Sony disabled
the ability to run a custom operating system. Like the iPhone and
other systems we discussed, PS3s then used secure boot to ensure
that they only boot Sony-signed operating systems.

Sony used EC-DSA for their signatures, which resulted in signa-
tures along the lines of:

σ = (gr, r + H(pk||gr||m) · sk) (mod q)

σ′ = (gr, r + H(pk||gr||m′) · sk) (mod q)

In EC-DSA, r is supposed to be a long random number, serving
as a nonce. However, Sony re-used these nonces in pairs of signa-
tures. This meant that their signatures revealed their secret key! This
allowed others to sign their own operating systems.

Importantly, Sony had a plan for updating the PS3 firmware that
allowed them to ship a fix for this attack. However, attackers quickly
found flaws in every other update they shipped—it is very hard to
secure a device that the attacker has unconstrained access to.

conclusions 4

4 Software Security: WannaCry Ransomware

Ransomware is a type of malware that encrypt important-looking
files on the infected system and demands a payment in Bitcoin to
decrypt the files. This is inconvenient and upsetting for personal
computers, but for enterprise computer systems this can cause huge
monetary losses. For hospital systems, this can even lead to loss of
life. This WannaCry randomware infected hundreds of thousands
of computers and caused billions of dollars of damange, but did not
make much money due to bad payment systems and slow decryp-
tion.

The bugs used to enable this were part of an exploit developed
and kept secret by the NSA called EternalBlue. It took advantage
of several C bugs, including an invalid cast, a parser bug, and an
allocation bug, to eventually achieve remote code execution over the
network on a Windows system.

The NSA intended to keep these exploits to themselves, and thus
did not inform Microsoft (or anyone else) about the bugs in their
software. However, an NSA contractor took terabytes of NSA data
home with him, including this exploit. On his home computer, he ran
Kaspersky antivirus. Importantly, Kaspersky sends suspicious files
home for analysis. Wall Street Journal reported that this was likely
how the exploit leaked and became a part of malware.

In order to spread to many computers, WannaCry looked some-
thing like the following:

1. Connect to a website at a random-looking address and exit if it
succeeds. Security teams would often analyze software that they
thought may include malware by running it in a VM, allowing
network requests to succeed, and watching what happens. This
random-looking domain did not really exist, so this may have been
a way to try to detect when the software is running in a VM and
make it behave "normally“.

2. Install Tor and connect to command-and-contral infrastructure.

3. Encrypt all files with a fixed set of extensions with RSA and AES.

4. Demand a ransome to be paid to one of four static Bitcoin ad-
dresses.

5. Spread itself by trying to perform the exploit on all IPs in the local
network.

When designing a system, it is prudent to have the system as
simple as possible, since less software leads to fewer bugs. And of

conclusions 5

course, any bug is a security bug—each of the bugs used in the Eter-
nalBlue exploit did not look like a security bug, but the combination
of them allowed for a powerful exploit.

5 Privacy: US Census

The US Census, performed every decade, collects data used to allo-
cate seats in the House of Representatives and by many researchers.
The Census Bureau is mandated to make this information public, but
is forbidden by law from publishing any data that allows individuals
to be identified.

In the 2020 census, the bureau used differential privacy to protect
released data from de-identification. However, they used ϵ = 19.61 to
avoid adding so much noise that the data lost its utility. This meant
that if the probability of some event happening to an individual
without the release of these data was p, the release of these data with
ϵ = 19.61 was guaranteed to make the probility at most ≈ e19.61 p, or
around a million times the original probability.

	Authentication: OPM Hack
	Transport Security: POODLE
	Platform Security: Sony PS3 Hack
	Software Security: WannaCry Ransomware
	Privacy: US Census

